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Quantitative multiparametric MRI 
predicts response to neoadjuvant therapy 
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Abstract 

Background:  The purpose of this study was to determine whether advanced quantitative magnetic resonance 
imaging (MRI) can be deployed outside of large, research-oriented academic hospitals and into community care set-
tings to predict eventual pathological complete response (pCR) to neoadjuvant therapy (NAT) in patients with locally 
advanced breast cancer.

Methods:  Patients with stage II/III breast cancer (N = 28) were enrolled in a multicenter study performed in com-
munity radiology settings. Dynamic contrast-enhanced (DCE) and diffusion-weighted (DW)-MRI data were acquired 
at four time points during the course of NAT. Estimates of the vascular perfusion and permeability, as assessed by the 
volume transfer rate (Ktrans) using the Patlak model, were generated from the DCE-MRI data while estimates of cell 
density, as assessed by the apparent diffusion coefficient (ADC), were calculated from DW-MRI data. Tumor volume 
was calculated using semi-automatic segmentation and combined with Ktrans and ADC to yield bulk tumor blood 
flow and cellularity, respectively. The percent change in quantitative parameters at each MRI scan was calculated and 
compared to pathological response at the time of surgery. The predictive accuracy of each MRI parameter at different 
time points was quantified using receiver operating characteristic curves.

Results:  Tumor size and quantitative MRI parameters were similar at baseline between groups that achieved pCR 
(n = 8) and those that did not (n = 20). Patients achieving a pCR had a larger decline in volume and cellularity than 
those who did not achieve pCR after one cycle of NAT (p < 0.05). At the third and fourth MRI, changes in tumor vol-
ume, Ktrans, ADC, cellularity, and bulk tumor flow from baseline (pre-treatment) were all significantly greater (p < 0.05) 
in the cohort who achieved pCR compared to those patients with non-pCR.

Conclusions:  Quantitative analysis of DCE-MRI and DW-MRI can be implemented in the community care setting to 
accurately predict the response of breast cancer to NAT. Dissemination of quantitative MRI into the community set-
ting allows for the incorporation of these parameters into the standard of care and increases the number of clinical 
community sites able to participate in novel drug trials that require quantitative MRI.

Keywords:  NAT, Diffusion, Dynamic contrast enhanced, DW-MRI, DCE-MRI

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Quantitative imaging allows for the characterization of 
biological phenomena from radiological data and has 
developed to the point where it is regularly incorporated 
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in oncology clinical trials in the academic setting [1, 2]; 
however, it has yet to be expanded into the traditional 
radiology setting. With 85% of oncology patients receiv-
ing care and imaging from local or regional clinics [3], 
there is a need to move these advancements from aca-
demic institutes into community care facilities. Quantita-
tive MRI has shown particular promise in predicting the 
response of breast tumors to neoadjuvant therapy (NAT) 
[4–6]. NAT, administration of therapy prior to defini-
tive surgical resection of disease, is the standard-of-care 
approach for patients with locally advanced breast can-
cer (i.e., stage II–III). The main objectives of NAT are to 
improve overall patient survival by: (1) reducing the pri-
mary tumor burden for surgical resection, (2) treating 
clinically occult micrometastases, and (3) evaluating the 
impact of systemic therapies on breast cancer biology to 
improve selection of downstream therapeutic regimens 
[7–13]. Patients who achieve a pathological complete 
response (pCR, i.e., absence of viable tumor cells in 
the primary or local lymph nodes) following NAT have 
shown improved outcomes with increased survival rates 
[7, 8]. Conversely, patients with residual disease (i.e., non-
pCR) at the conclusion of NAT have an increased risk of 
early recurrence and poorer prognoses [14–18]. Thus, 
accurate and early assessment of response to NAT would 
provide the opportunity to replace an ineffective treat-
ment with an alternative regimen, potentially improving 
outcomes while simultaneously avoiding or decreasing 
side effects of ineffective therapies. As quantitative MRI 
has been shown to predict the response of breast tumors 
early in the course of NAT in academic settings [19, 20], 
a natural progression toward implementation into stand-
ard of care is to integrate such techniques into both 
multi-site and community-based settings. As the major-
ity of cancer patients receive their care in the community 
setting [21], this will allow for improved care for a dra-
matically large percentage of breast cancer patients.

Evaluating early changes in cellularity and vascularity 
through quantitative MRI provides the opportunity to 
obtain serial three-dimensional biological characteriza-
tion of the tumor at baseline and in response to systemic 
treatments. Diffusion-weighted (DW)-MRI and dynamic 
contrast-enhanced (DCE)-MRI have the potential to 
characterize spatial and temporal alterations in breast 
cancer cells and the tumor microenvironment prior to 
downstream effects of changes in tumor size. Tracking 
alterations in the apparent diffusion coefficient (ADC), 
extracted from DW-MRI, has been used to predict the 
response of breast tumors to therapy [22–24]. The ADC 
correlates with cellularity [25–27] and may be a better 
predictor of eventual response than measurements of 
tumor size [28]. DCE-MRI pharmacokinetic parameters 
present quantitative information relating to the changes 

in vascular delivery and extracellular space and have been 
demonstrated to be predictive of pCR in breast tumors 
undergoing NAT [19, 23, 29, 30]. DCE-MRI parameters 
such as Ktrans (the volume transfer rate, related to vascu-
lar permeability and perfusion) can provide information 
on tumor vascularity. These emerging metrics have also 
shown clinical promise at informing advanced mathe-
matical models that further describe the underlying cel-
lular and biological features of the tumor during therapy 
[31, 32]. While biopsy samples are an integral component 
of breast cancer diagnosis and treatment guidance, imag-
ing provides a powerful and complementary, noninva-
sive tool to probe the entire tumor microenvironment. 
Advanced measurements quantifying underlying tumor 
biology represent a comprehensive and personalized 
approach to monitor and predict response in cancer care.

To maximize the impact of quantitative imaging of 
locally advanced breast cancer during NAT, quantitative 
imaging must be implemented and validated in the com-
munity setting. Further, these methods must be robust 
enough to be utilized in many different breast cancer 
subtypes and across various sequencing, timing, and 
types of systemic therapy. We have previously shown 
that quantitative MRI metrics (ADC from DW-MRI and 
T1 mapping required for DCE-MRI) can be extracted 
from imaging protocols deployed in the community set-
ting on phantoms and normal subjects with high repeat-
ability and reproducibility [33]. The present study seeks 
to employ these techniques in the community setting to 
prospectively predict the response of locally advanced 
breast cancer and disseminate quantitative MRI beyond 
academia and toward routine application in the standard-
of-care setting.

Methods
Study population
Women (N = 28) who were previously diagnosed with 
locally advanced breast cancer (stages II–III) and pre-
scribed NAT were enrolled into this prospective clinical 
imaging study. The median age of patients was 44.5 years 
old (range of 25–74 years). See Table 1 for a summary of 
patient demographics and treatment regimens. Treat-
ment was selected by the patient’s oncologist prior to 
study enrollment. No hormonal therapy was performed 
in this population.

General study design
Patients underwent quantitative MRI at one of two 
community imaging clinics (separate and in addition to 
standard-of-care imaging). In this study, a ‘community-
care imaging center’ was defined as a non-academic, 
non-research setting (i.e., does not actively train any 
medical residents). Seven study participants received all 
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imaging at a community hospital (not affiliated with an 
academic medical center) and the other 21 participants 
received all imaging at an outpatient imaging center. In 
the clinical workflow at these sites, the MRI technologists 
were directly involved and responsible for positioning the 
patients and deploying the research imaging protocols. 
Study personnel designed and installed the imaging pro-
tocol. Patients received a baseline session prior to begin-
ning NAT (MRI 1) and following one round of NAT (MRI 
2). For patients whose NAT included a second thera-
peutic regimen, MRIs 3 and 4 were performed prior to 
and after the first round of the second therapeutic regi-
men, respectively (Fig. 1A). For patients who maintained 
the same regimen throughout NAT, MRIs 3 and 4 were 
acquired after two and three rounds of NAT, respec-
tively (Fig. 1B). Of the patients who enrolled in the study, 
three dropped out prior to MRI 2 and an additional two 
dropped out prior to MRI 3. None of these study drop-
outs achieved pCR. Additionally, no tumor was visible 

at MRI 2 for one patient who achieved pCR, no tumor 
was visible at MRI 3 for two patients who achieved pCR, 
and no tumor was visible at MRI 4 for three patients 
who achieved pCR. As there was no viable tumor on 
which to measure ADC or Ktrans these measures were 
not performed at time points where tumor was no longer 
detectable.

Image acquisition
MRI examinations were performed on a Siemens 3T 
Magnetom Skyra MR scanner (Siemens Medical Solu-
tions USA, Malvern, PA) at both clinical community 
imaging facilities equipped with either an 8- or 16-chan-
nel receive double-breast coil (Sentinelle, Invivo, 
Gainesville, Florida). Image acquisition parameters are 
summarized in Table  2. DW-MRI was acquired using 
a monopolar single-shot spin-echo echo planar imag-
ing (EPI) sequence with diagonal monopolar diffusion-
encoding gradients. Six acquisitions were averaged for 

Table 1  Clinical features of the study population (pathological complete response, pCR)

Patient # Age [years] ER/PR/HER2 Therapeutic regimen Pathological 
response

1 54 +/−/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

2 41 +/+/+ doxorubicin/cyclophosphamide → paclitaxel/Herceptin pCR

3 74 −/−/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

4 25 −/−/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

5 26 −/−/+ doxorubicin/cyclophosphamide → paclitaxel /Herceptin pCR

6 41 −/−/− Carboplatin/paclitaxel → doxorubicin/cyclophosphamide pCR

7 37 −/−/− Carboplatin/paclitaxel → doxorubicin/cyclophosphamide Non-pCR

8 41 +/−/− doxorubicin/cyclophosphamide → paclitaxel pCR

9 47 +/+/− doxorubicin/cyclophosphamide → paclitaxel pCR

10 54 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

11 59 −/−/− Pembrolizumab (or placebo)/Carboplatin/paclitaxel Non-pCR

12 63 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

13 27 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

14 32 +/+/+ Taxotere/Carboplatin/Herceptin/Pertuzumab Non-pCR

15 52 −/−/− Carboplatin/paclitaxel → doxorubicin/cyclophosphamide Non-pCR

16 38 −/−/− Carboplatin/paclitaxel → doxorubicin/cyclophosphamide pCR

17 38 −/−/− Pembrolizumab (or placebo)/Carboplatin/paclitaxel pCR

18 62 −/−/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

19 38 +/+/+ Taxotere/Carboplatin/Herceptin/Pertuzumab Non-pCR

20 42 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

21 53 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

22 58 −/−/− Pembrolizumab (or placebo)/Carboplatin/paclitaxel Non-pCR

23 48 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

24 50 +/+/+ Taxotere/Carboplatin/Herceptin/Pertuzumab Non-pCR

25 64 +/+/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

26 40 +/−/+ Taxotere/Carboplatin/Herceptin/Pertuzumab pCR

27 31 −/−/− doxorubicin/cyclophosphamide → paclitaxel Non-pCR

28 54 −/−/− Talazoparib Non-pCR
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b-values of 0 and 200 s/mm2, while 18 acquisitions were 
averaged for the b-value of 800  s/mm2; this allowed for 
approximately equal signal-to-noise ratios [34] for all 
three b-values. DW-MRI was acquired over 10 sagittal 
slices centered on the tumor with 5 mm thickness and no 
slice gap. Spectrally selective adiabatic inversion recov-
ery fat suppression was included for a total scan time of 
1 min 39 s.

The T1 map and DCE-MRI scans were acquired using 
a three-dimensional spoiled gradient-echo sequence 
over 10 sagittal slices with slice thickness of 5  mm. To 
construct a map of the longitudinal relaxation rate (T1), 

variable flip angle data with 10 flip angles (2, 4, …, 20) 
were acquired in a total scan time of 50  s. A Siemens 
TurboFLASH sequence was used to map the B1 field to 
correct for transmit inhomogeneity. Due to the inclu-
sion of a slice gap in the B1 mapping protocol, two acqui-
sitions were performed to cover the same field of view 
(FOV) as the T1 measurements for a total acquisition 
time of 34  s. DCE scans were acquired with a temporal 
resolution of 7.27 s for eight minutes. A catheter placed 
within an antecubital vein delivered a gadolinium-based 
contrast agent (0.1 mmol/kg of Multihance or 10 mL of 
Gadovist) at 2 mL/s followed by a 20 mL saline flush via a 

Fig. 1  The diagram shows the timing of each MRI relative to the NAT regimen for patients who received two separate regimens (A) and patients 
who remained on a single regimen throughout the course of NAT (B)

Table 2  MRI acquisition parameters (TR, repetition time; TE, echo time; FOV, field of view; GRAPPA, GeneRalized Autocalibrating Partial 
Parallel Acquisition)

MRI parameters Anatomical scan DW-MRI B1 mapping T1-mapping: variable flip 
angle

DCE-MRI

Scan sequence T1-weighted 3D 
gradient-echo 
FLASH

Single-shot spin-echo 
(SE) echo planar (EPI)

3D spoiled gradient echo T1-weighted 3D spoiled 
gradient echo

T1-weighted 3D 
spoiled gradient 
echo

TR (ms) 5.3 3000 8680 7.9 7.02

TE (ms) 2.3 52 2 2.4 4.6

Flip angle (°) 10 90 8 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 6

Acquisition matrix 256 × 256 128 × 128 96 × 96 192 × 192 192 × 192

FOV (mm) 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256

Slice thickness (mm) 1 5 5 5 5

GRAPPA acceleration factor 2 2 N/A 3 N/A

Fat suppression SPAIR SPAIR N/A N/A N/A

Acquisition time (min:s) 3:11 1:39 0:34 0:50 8:00



Page 5 of 12Virostko et al. Breast Cancer Research          (2021) 23:110 	

power injector after the acquisition of the first minute of 
dynamic scans which served as baseline. A separate high-
resolution anatomical MRI was performed before and 
after contrast agent administration to aid manual tumor 
segmentation.

Tumor segmentation
The tumor was first manually segmented on 2D slices 
with guidance by a certified fellowship-trained breast 
radiologist. This segmentation was used to calculate 
Response Evaluation Criteria in Solid Tumors (RECIST; 
[35]) measurements of longest tumor diameter. Following 
the manual segmentation, the tumor region of interest 
(ROI) was then automatically refined to detect enhanc-
ing tumor voxels using methods adapted from Giger et al. 
[36] and further described in our previous work [37] and 
Additional file 1: Methods.

Image analysis
Prior to image analysis, all images for each patient from 
a single scan session were aligned to a common space via 
rigid registration (imregtform, MATLAB) to minimize 
patient motion.

The DW-MRI was used to extract ADC values (see 
Additional file  1: Methods for details) for every voxel 
within the tumor and the mean ADC within the tumor 
was calculated. Tumor cellularity at each voxel was cal-
culated from ADC values as previously described [38] 
(see Additional file 1: Methods for details). To calculate 
cellularity at each voxel, we assume that a tumor voxel 
with the minimum ADC, ADCmin, contains the maxi-
mum number of cells, while voxels with an ADC equiva-
lent to free water, ADCw, are devoid of tumor cells. Then, 
by assuming an individual tumor cell has a volume of 
4189 µm2 to derive the carrying capacity of each voxel, 
Θ, we approximate the total number of tumor cells 
within each voxel by computing Θ *[(ADCw − ADC(x))/
ADCw − ADCmin).
T1 maps were generated from the variable flip angle 

data along with a B1 map to correct for inaccuracies in 
the transmitted B1 field as is commonly seen in gradient-
echo acquisitions at higher fields [39]. Details on this 
process are presented in Additional file 1: Methods.

The DCE-MRI data were analyzed using the Patlak 
model [40], which returns estimates of Ktrans using the 
first 36.35  s (i.e., the first five post-contrast injection 
images) of the time course. Detailed description of this 
analysis is provided in Additional file  1: Methods. Due 
to evidence of non-normality in the voxel distribution of 
Ktrans, median tumor Ktrans values were calculated. A ‘bulk 
tumor flow’ parameter (in units of [ml/min]) was also 
calculated as the product of the mean Ktrans value of the 
tumor and the tumor volume.

Pathological response
Histopathologic analysis was performed at study sites as 
standard of care and reported to the referring oncolo-
gist. pCR was the reference standard for determining 
response, defined as no residual invasive disease in either 
breast or axillary lymph nodes after NAT. Patients were 
categorized as having pCR or non-pCR on the basis of 
postsurgical histopathologic examination findings.

Statistical analysis
Linear regression was performed to quantify changes in 
each MRI parameter over time across the entire cohort. 
Differences in baseline (MRI 1) parameters between 
the pCR and non-pCR cohorts were assessed by the 
Mann–Whitney test. The percent change in each imag-
ing parameter relative to baseline was calculated by 
determining the relative change from MRI 1 to each 
subsequent MRI. Multiple Mann–Whitney tests were 
used to compare pCR versus non-pCR groups across the 
treatment time course. The Holm–Sidak method was 
used to adjust p values for multiple comparisons across 
time points. Differences between the pCR and non-pCR 
groups were considered significant when the adjusted p 
values were less than 0.05. Receiver operating character-
istic (ROC) curves were generated for the relative change 
in each MRI parameter post baseline measurement. The 
ability of each parameter to discriminate between the 
pCR and non-pCR groups was estimated using the area 
under the ROC curve with corresponding 95% confi-
dence interval. Statistical analysis was performed using 
Prism 8 software (Graphpad, San Diego, CA).

Results
Prior to the start of NAT, there were no significant dif-
ferences in any quantitative MRI parameters calculated 
at baseline (MRI 1) between patients who achieved pCR 
and those who did not. Additionally, there were no sig-
nificant differences in any quantitative MRI parameters 
across the two study sites. After commencing NAT, we 
observed declines in tumor volume and median Ktrans and 
increases in mean tumor ADC in women who ultimately 
achieved pCR, as shown in Fig.  2 for a representative 
study participant who achieved pCR. In contrast, women 
who did not achieve pCR did not consistently demon-
strate declines in either tumor size or Ktrans nor increases 
in ADC, as shown for a representative study participant 
who had stable disease (Fig. 3).

Tumor longest diameter (Fig. 4A) and volume (Fig. 4B) 
tended to decline over the course of NAT across the 
cohort of 28 study participants (p < 0.005). However, 
women who achieved pCR had greater (p < 0.05) relative 
declines in tumor volume at MRI 2 relative to pre-treat-
ment values than those who did not ultimately achieve 
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Fig. 2  Representative Ktrans (top) and ADC (bottom) maps over the course of therapy for a woman who achieved pCR (patient #9 in Table 1). Median 
tumor Ktrans values decline over the course of therapy, from 0.12 min−1 at MRI 1 to 0.10 min−1 at MRI 2 to 0.02 min−1 at MRIs 3 and 4. Mean tumor 
ADC values increase over the course of therapy, from 0.0011 mm2/s at MRIs 1 and 2 to 0.0013 mm2/s at MRIs 3 and 4. For display purposes, Ktrans and 
ADC parametric maps are interpolated to the resolution of anatomical images and overlaid on top of the anatomical images. (Note that all analysis 
was performed on the resolution at which the data were acquired.)

Fig. 3  Representative Ktrans (top) and ADC (bottom) maps over the course of therapy for a woman who had stable disease (patient #4 in Table 1). 
Median Ktrans values increase over the course of therapy, from 0.10 min−1 at MRI 1 to 0.15 min−1 at MRI 2 and to 0.14 min−1 at MRIs 3 and 4. Mean 
tumor ADC values are largely unchanged over the course of therapy, from 0.0009 mm2/s at MRIs 1, 2, and 3 to 0.0008 mm2/s at MRI 4. For display 
purposes, Ktrans and ADC parametric maps are interpolated to the resolution of anatomical images and overlaid on top of the anatomical images. 
(Note that all analysis was performed on the resolution at which the data were acquired.)
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pCR (31 ± 15% greater decline in the pCR group). Addi-
tionally, the relative decline in tumor volume was signifi-
cantly greater in the pCR group at each MRI performed 
during NAT (p < 0.05, Fig.  4D). In contrast, the relative 
decline in tumor longest diameter was not statistically 
different between the pCR and non-pCR cohorts at any 
MRI performed during NAT (Fig. 4C).

Across the entire patient cohort, the mean tumor ADC 
displayed no significant change over the course of NAT 
(Fig.  5A). In contrast, the median Ktrans significantly 
declined over the course of NAT (p < 0.005, Fig.  5B) 
across all patients. Changes in mean tumor ADC from 
baseline revealed significant differences between the 
pCR and non-pCR groups, with increases in the ADC 
in the pCR group of 21 ± 12% and 32 ± 14% at MRIs 3 
and 4, respectively (p < 0.05, Fig. 5C). Similarly, the rela-
tive decline in median tumor Ktrans was 32 ± 15% greater 
in the pCR group than the non-pCR group at MRI 3 and 
31 ± 17% greater at MRI 4 (p < 0.05, Fig. 5D).

Tumor cellularity (Fig.  6A) and bulk tumor flow 
(Fig.  6B) tended to decline over the course of NAT 

across all study participants (p < 0.005). The decline in 
tumor cellularity from baseline was 30 ± 16% greater 
in the pCR group at MRI 2, 24 ± 13% greater at MRI 
3, and 33 ± 13% greater at MRI 4. This decline was sig-
nificantly greater in the cohort who achieved pCR than 
the non-pCR cohort at all MRIs performed during NAT 
(p < 0.05, Fig. 6C). Likewise, the relative decline in bulk 
tumor flow from baseline was significantly greater in 
the pCR group at MRIs 3 and 4 (22 ± 14% greater at 
MRI 3 and 19 ± 10% greater at MRI 4, p < 0.05, Fig. 6D).

The diagnostic accuracy of each MRI parameter for 
predicting pCR was quantified using ROC analysis. 
The area under each ROC curve (AUC-ROC) is shown 
in Table 3 with ROC curves shown in Additional file 2: 
Fig. S1. Change in tumor volume from baseline was the 
best early predictor of pCR in breast tumors at MRI 
2 (AUC-ROC = 0.82), change in mean ADC was the 
best predictor at MRI 3 (AUC-ROC = 0.93), and bulk 
tumor flow was the best predictor at MRI 4 (AUC-
ROC = 1.00). In general, the predictive accuracy of each 
MRI parameter increased at later time points.
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Discussion
Moving advanced technology from the research-ori-
ented, academic medical setting into the community-
based, standard-of-care setting has the potential to 
increase the level of care for the overwhelming major-
ity of cancer patients. In particular, quantitative DCE- 
and DW-MRI have emerged as two MRI techniques 
that have matured to the point where they can provide 
accurate predictions of the response of breast tumors 
to NAT. However, there has been limited progress 
implementing these quantitative MRI methods for pre-
dicting response to NAT in the community care setting. 
Hurdles to community implementation include techni-
cal limitations porting quantitative protocols onto MRI 
scanners not governed by research agreements, differ-
ences in clinical and research workflows, exam sched-
uling, and data transfer. We demonstrate that these 
challenges can be overcome. We believe this represents 
an important first step to disseminating quantitative 
imaging beyond academic and research hospitals to 
local and regional imaging facilities. This has the poten-
tial to greatly expand the populations of breast cancer 

patients that have access to (1) advanced imaging and 
(2) participation in clinical trials that require advanced 
imaging.

Previous studies have shown that DCE- and DW-MRI 
can predict pathological response to NAT in locally 
advanced breast cancer. For example, quantitative phar-
macokinetic DCE-MRI performed following one cycle of 
NAT showed that the parameters Ktrans and kep (i.e., the 
intravasation rate constant) were excellent predictors of 
pCR prior to any significant changes in RECIST [23, 29, 
41]. Likewise, measurements of ADC have shown that 
both baseline and changes in ADC can be better pre-
dictors of tumor response than measurements of tumor 
size [24, 28, 42–44] and can be further strengthened by 
breast cancer subtype stratification [45, 46]. Combining 
biological information from DCE- and DW-MRI further 
increases the predictive ability of quantitative MRI in 
the neoadjuvant setting, achieving AUC-ROCs between 
0.88 and 0.92 [23, 47]. While these studies show positive 
advancements, they have yet to extend beyond the aca-
demic setting, thereby leaving an important gap in dis-
tributing this emerging technology to all patients.
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Our study demonstrates that the predictive ability 
of MRI metrics acquired in the community setting is 
similar to those in an academic center. In particular, we 
found an AUC-ROC of 0.82 after only 1 cycle of NAT 
using semi-automatic measurements of tumor volume. 
This study further introduces a novel metric we term 
‘bulk tumor flow’ that quantitatively describes the total 
blood flow to the tumor. Bulk tumor flow, which com-
bines the automated method for extracting vascular-
ized tumor volume and the mean tumor Ktrans, provided 
the highest overall AUC-ROC in this study, namely 
a perfect AUC of 1.0 at MRI 4, which was acquired at 
an average of 12  weeks into NAT across the cohort. 
Of note, the longest tumor diameter (which is used in 
RECIST for evaluating tumor response to therapy) was 
not able to predict pCR at any time point examined 
in this study. Typically, RECIST is implemented dur-
ing clinical trials of highly selected patient populations 
receiving limited therapeutic regimens. Differences 
between clinical trial and ‘real world’ effectiveness have 
been well established [48]. This ‘real world’ effectiveness 
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Table 3  Area under the receiver operating characteristic curve 
(AUC-ROC) for predicting pCR from different MRI measurements

Each column indicates the relative change in each parameter from the baseline 
MRI (i.e., MRI 1) at the specified MRI scan

MRI 2 MRI 3 MRI 4

Longest diameter 0.71
[95% CI 0.46–0.97]

0.80
[95% CI 0.61–0.98]

0.84
[95% CI 

0.66–1.00]

Tumor volume 0.82
[95% CI 0.65–0.99]

0.82
[95% CI 0.64–1.00]

0.88
[95% CI 

0.73–1.00]

Mean ADC 0.58
[95% CI 0.24–0.91]

0.93
[95% CI 0.81–1.00]

0.88
[95% CI 

0.71–1.00]

Median Ktrans 0.53
[95% CI 0.28–0.78]

0.85
[95% CI 0.69–1.00]

0.84
[95% CI 

0.65–1.00]

Cellularity 0.81
[95% CI 0.62–1.00]

0.83
[95% CI 0.65–1.00]

0.88
[95% CI 

0.73–1.00]

Bulk tumor flow 0.73
[95% CI 0.50–0.95]

0.81
[95% CI 0.59–1.00]

1.00
[95% CI 
1.00–1.00]
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study of community-implemented quantitative MRI 
demonstrates that the MRI metrics investigated in this 
study may be more accurate than RECIST at predicting 
pCR across a wide range of treatments and subtypes of 
locally advanced breast cancer.

There are a number of limitations to this study. The 
same contrast agent was not used for all patients; 
though, each individual patient did receive the same 
contrast agent at all of their MRI exams. We note that 
this was necessary to work within multiple community 
imaging centers as the contrast agent and dose admin-
istered was based on site-specific protocols, and that 
image processing accounted for differences in contrast 
agent. Additionally, the treatment regimens differed 
between patients, as guided by the treating oncologists. 
While this makes the study more challenging to control 
for variation, it is exactly the type of patient popula-
tion that community-based oncologists encounter on a 
daily basis and, therefore, has great practical relevance. 
Another area that requires further exploration for true 
widespread adoption is in the area of automated data 
analysis. We believe that the automated segmenta-
tion implemented to assess these predictions can be 
incorporated into routine clinical workflow; however, 
that has not been evaluated at this point. In this study, 
clinical radiologists were involved in the segmentation 
process, while imaging scientists conducted all quanti-
tative analyses. An additional challenge associated with 
this study is the ability to conduct a protocol that works 
within the confines of non-research clinical scanners 
and within the time frame required by radiology cent-
ers performing breast MRIs. Finally, patient recruit-
ment can be especially challenging in a non-academic 
environment where the oncologists, radiologists, and 
surgeons are not housed in one location; thus, the pre-
sent study is limited to 28 patients.

Conclusion
To the best of our knowledge, this represents the first 
study to show that quantitative DCE- and DW-MRI can 
be successfully implemented in community care facili-
ties to accurately predict the response of locally advanced 
breast cancer to NAT. We showed that parameters char-
acterizing the change in tumor volume, cellularity (ADC), 
and vascular characteristics (Ktrans) can predict patholog-
ical complete response to NAT significantly better than 
the RECIST criteria. Furthermore, integrating DW-MRI 
and DCE-MRI with semi-automated measurements of 
tumor volume further increases the ability to accurately 
predict response early in the course of therapy. By mov-
ing these emerging measures to community-based medi-
cal centers, where the majority of patients receive their 

care, we are dramatically increasing the patient popula-
tion that can be served by advanced imaging.
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