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Abstract 

Background:  Many women with breast cancer also have a high likelihood of cardiovascular mortality, and while 
there are several cardiovascular risk prediction models, none have been validated in a cohort of breast cancer 
patients. We first compared the performance of commonly-used cardiovascular models, and then derived a new 
model where breast cancer and cardiovascular mortality were modeled simultaneously, to account for the competing 
risk endpoints and commonality of risk factors between the two events.

Methods:  We included 20,462 women diagnosed with stage I–III breast cancer between 2000 and 2010 in Kaiser 
Permanente Northern California (KPNC) with follow-up through April 30, 2015, and examined the performance of the 
Framingham, CORE and SCOREOP cardiovascular risk models by area under the receiver operating characteristic curve 
(AUC), and observed-to -expected (O/E) ratio. We developed a multi-state model based on cause-specific hazards 
(CSH) to jointly model the causes of mortality.

Results:  The extended models including breast cancer characteristics (grade, tumor size, nodal involvement) with 
CVD risk factors had better discrimination at 5-years with AUCs of 0.85 (95% CI 0.83, 0.86) for cardiovascular death and 
0.80 (95% CI 0.78, 0.87) for breast cancer death compared with the existing cardiovascular models evaluated at 5 years 
AUCs ranging 0.71–0.78. Five-year calibration for breast and cardiovascular mortality from our multi-state model was 
also excellent (O/E = 1.01, 95% CI 0.91–1.11).

Conclusion:  A model incorporating cardiovascular risk factors, breast cancer characteristics, and competing events, 
outperformed traditional models of cardiovascular disease by simultaneously estimating cancer and cardiovascular 
mortality risks.

Keywords:  Breast cancer, Cardiovascular disease, Cardiovascular mortality, Risk prediction models

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
There are an estimated 3.8 million breast cancer (BC) 
survivors in the United States [1]. The majority of BCs 
are diagnosed as local or regional cancers (Stages I- III) 

and, given improvements in cancer screening and treat-
ment, the 5-year survival rate for women with BC is now 
over 90% [1]. Many women diagnosed with BC will die 
from other causes, with cardiovascular disease (CVD) 
being the most common non-BC-related cause of death 
[2]. The probability of dying from a non-BC-related cause 
increases with age at BC diagnosis and in those with early 
stage BC [3]. BC survivors are at increased risk of CVD 
due to shared risk factors between cancer and CVD, as 
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well as the cardiotoxicity of many cancer therapies [4]. 
In order to reduce health disparities in cardio-oncology 
outcomes, it is essential that we have a better way of risk 
stratifying women based on their CVD risk and BC treat-
ment history. It is likely that the risk of cardiovascular 
disease and mortality [4, 5], as well as the risk of treat-
ment related cardio-toxic effects in BC survivors is as a 
result underestimated by providers and women [4, 6, 7].

Given the expected long-term survival and increase in 
risk of cardiovascular events and mortality in BC survi-
vors, prospective evaluation of the performance of risk 
models will help in clinical risk counseling by primary 
care physicians and oncologists. Currently, there are a 
number of CVD risk prediction models that have been 
developed for the general population [8–12]. However, 
some have been found to have poor performance in per-
sons older than age 65  years, and especially in women 
[13–15]. The performance of these commonly-used CVD 
models in women with a history of BC has not been eval-
uated. To address this gap, we examined the performance 
of established CVD risk models in a non-metastatic BC 
population. We then developed an enhanced model to 
more accurately identify combinations of risk factors 
that may predict an increased risk for CVD versus BC 
mortality.

Methods
Study population and data collection
Our study population included all women who were diag-
nosed for the first time with stages I to III BC in the Kai-
ser Permanente Northern California (KPNC) healthcare 
delivery system from January 1, 2000 to December 31, 
2010, with follow-up through April 30, 2015. The KPNC 
coverage area includes 23 counties in the San Francisco 
Bay Area and the Central Valley of California [16, 17]. We 
linked data from the KPNC Cancer Registry to the elec-
tronic medical record (EMR) and administrative and clin-
ical electronic databases within KPNC to obtain patient 
demographic, cancer specific, and model covariate infor-
mation. This study including the analytic data plan was 
approved by the KPNC Institutional Review Board.

Using the medical record, we defined patient age as 
age at first diagnosis of BC, race as White, Black, Asian/
Pacific Islander, or Other, and ethnicity as Hispanic or 
non-Hispanic. Information on BC included type of sur-
gery (lumpectomy, mastectomy (unilateral or bilateral)), 
stage, grade, lymph nodes (number examined and num-
ber positive), estrogen receptor (ER) and progesterone 
receptor (PR) status, HER2 status, tumor size (cm), and 
laterality. Information on treatment was also extracted 
from the medical record, including chemotherapy 
(within the first year of diagnosis) and hormonal therapy. 
Treatment variables included whether or not the patient 

received any radiation, chemotherapy, or hormonal ther-
apy. For chemotherapy we also extracted intravenous 
medications received, and summarized by drug class. 
Using data from the medical record, we summarized 
the patients’ other comorbidities based on the modified 
Charlson Comorbidity Index [18].

We extracted the first recorded measurement of CVD 
risk factors for this patient population in the time frame 
of 6 months prior to cancer diagnosis to up to 18 months 
post diagnosis. We extracted the following information 
needed for the CVD models: total cholesterol, HDL cho-
lesterol, LDL cholesterol, systolic blood pressure (average 
of 2 measurements if available), smoking status, diabe-
tes, and whether prescribed any blood pressure lowering 
medication. We also recorded history of CVD defined 
as the occurrence of any of the following ICD-9 codes at 
any time prior to, up through 6 months post, BC diagno-
sis [19] (ICD-9 codes: 410–414, 428, 431, 432, 434, 435, 
440.21). We include both CVD mortality and morbidity.

We created person-time data based on date of diagno-
sis of BC until either disenrollment from KPNC (defined 
as > 90-day lapse in enrollment), date and cause of death 
(available in the KPNC Cancer Registry), or end of fol-
low-up (April 30, 2015), whichever came first. Cardiovas-
cular death also included ICD-10 codes: I00-I99.

CVD model selection
Models were first selected based on a systematic review 
of the literature [20] and were limited to those that could 
be validated based on availability of data from the KPNC 
EMR. A summary of included models can be found in 
Additional file  1: Table  S1. The majority of the models 
were developed on the Framingham cohort and pre-
dicted the endpoint “hard CHD events", defined as coro-
nary death or CHD events (ICD-9 codes 402, 410–414, 
429.2, and 429.9, see Additional file: Table  S2 for full 
details). Additional focus was given to any models devel-
oped specifically for an older population (age > 65 years), 
which included the Systematic Coronary Risk Evalua-
tion (SCORE) [8, 13] and Coronary Risk in the Elderly 
(CORE) [14]. Other CVD risk models that could not be 
validated due to their use of covariates that are not rou-
tinely captured in clinical practice included the Reynolds 
Risk Score, QRISK, PROCAM, and Framingham with 
additional covariates such as BMI and heart rate [21–26].

Statistical methods
We first compared patient and disease characteristics 
using descriptive statistics and calculated and plot-
ted cumulative incidences of death by cause. In order to 
assess the performance of the CVD models, individual 
patient risk scores were calculated based on the origi-
nal models either by use of score sheets [19] or direct 
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calculation from the model’s parameter estimates. We 
used Cox proportional hazards models to create the 
Framingham recalibrated model, keeping the established 
risk factor categories from the 2008 Framingham Model 
[9] and re-calculating the parameter estimates based on 
the current cohort.

We summarized discrimination of each model at the 
model’s recommended prediction interval by the area 
under the ROC curve (AUC), with 95% confidence inter-
vals calculated using the methods of DeLong [27]. Due to 
the variation in endpoint definition (e.g. morbidity and 
mortality endpoints) and prediction fixed-time horizons 
(e.g. 5  year versus 10  year) across models, we used two 
approaches to calculate the area under the ROC curve 
(AUC) for each model. The first approach we used was a 
naïve approach in which we excluded patients who were 
not followed for the full prediction horizon either due to 
experiencing a competing cause of death or shorter fol-
low-up time. In this approach, patients who experienced 
an event after the prediction time frame were considered 
non-events. The second approach we applied used all 
patients, and those who did not have complete follow-up 
for the prediction horizon contributed data only up to the 
length of time that they were followed, such that compet-
ing events are not excluded from the validation sample, 
but rather censored at their last follow-up time [28]. We 
used the rmap package in R for this latter approach. For 
model validation analyses, if a patient was missing any 
covariate data necessary for the risk calculation, they 
were excluded from the validation of that specific model.

In creating a new model, we used a multi-state frame-
work that allows for the simultaneous modeling of the 
competing causes of death from BC, CVD, or all other 
causes. Each cause of death is considered a state to which 
the patient can transition after diagnosis, with a given 
probability based on their individual risk profile. The 
transitions are modeled with stratified (or cause-spe-
cific) Cox proportional hazards models, using the mstate 
library in R [29–32]. We considered risk factors from the 
established CVD models as well as BC characteristics, 
treatment indicators, age, and history of CVD before 
BC. In order to include the greatest number of women 
in our new model, we allowed a “missing” category to 
be included for each covariate that contained missing 
EMR data. We included in the final models only risk fac-
tors that were statistically significantly associated with 
the transition of interest. As sensitivity analyses we also 
created separate Cox proportional hazards models and 
sub-distribution hazards models [33] for CVD and BC 
death. Lastly, to examine the impact of missing risk factor 
data, complete case analyses were run, which included 
only those observations with non-missing values for 
all risk factors in the models. We summarized model 

discrimination by averaging the AUC from 10 bootstrap 
samples of our original data. We used SAS version 9.4 for 
Windows (SAS Institute, Cary, NC) and R version 3.1.2 
(http://​cran.​us.r-​proje​ct.​org/) for all analyses.

Results
There were 20,462 women diagnosed with stage I-III BC 
between 2000 and 2010 in KPNC (Table  1). The mean 
age at diagnosis was 60 years (range 21 to 103 years). The 
majority of the sample was white (79%) and non-His-
panic (90%). Over half the sample (52%) was diagnosed 
with stage 1 disease, and nearly all were treated with sur-
gery (57% lumpectomy, 41% mastectomy).

There were 17,773 (86.9%) women who were alive at 
last follow-up (in 2015 or at the time of censoring). Less 
than 1% were censored for disenrollment from KPNC, 
and the median follow-up for survivors was 7.5  years. 
There were 2729 (13.3%) deaths overall, with 842 (4.1% 
of the cohort or 38.5% of deaths) due to BC and 696 (3.4% 
of the cohort or 25.5% of deaths) due to cardiovascu-
lar events. Of the 1191 (5.8% of the cohort or 43.6% of 
deaths) deaths from other causes, the largest subgroups 
were due to other cancers (n = 321) and unspecified res-
piratory causes (n = 198). (See Additional file: Table  S3 
for a summary of the non-fatal cardiovascular events fol-
lowing a BC diagnosis.)

In this cohort, there were also differences in cause of 
mortality by age and stage at BC diagnosis. For those 
less than 50 years of age at BC diagnosis, and those with 
stage 3 disease, BC was the leading cause of death (see 
Fig. 1). For those greater than 70 years at diagnosis with 
stage 1 and 2 disease, the cumulative incidences of mor-
tality from CVD and all other causes were much higher 
than those due to BC. Women who were diagnosed in 
the 50–69 age range also had survival outcomes that were 
dependent upon their stage at BC diagnosis, with stage 2 
and 3 disease having higher incidences of BC death.

Table  2 summarizes the discrimination of existing 
CVD models whose AUCs ranged from 0.64 (Framing-
ham model for hard events evaluated at 10 years) to 0.78 
(Framingham model recalibrated to our data set, evalu-
ated at 5  years) in the current cohort. The SCORE OP 
model, developed specifically for use on an older popu-
lation (age > 65), did not outperform the models devel-
oped on a broader range of age groups (SCORE OP 
AUC = 0.76, 95% CI 0.73–0.81), nor did the CORE model 
which was the only model accounting for competing 
causes of death (AUC = 0.74, 95% CI 0.72, 0.76).

Despite the moderate discriminative ability of the exist-
ing models, the O/E ratios show that the models for 5 and 
10-year predictions, those predicting fatal events only, 
and those developed on a European population were not 
well calibrated to this cohort of BC patients. The majority 

http://cran.us.r-project.org/
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of the models tended to underestimate the number of 
events across most deciles of risk, while the recalibrated 
models over-estimated the number of events. Those with 
shorter prediction horizons (2–4  years) had better cali-
bration, and may therefore be more useful in this patient 
population.

Multi‑state model
To evaluate whether we could improve upon the previ-
ously published CVD models for a cohort of early-stage 
BC women, we fit a multi-state model including both 
established cardiovascular risk factors, and BC disease 

Table 1  Patient baseline and disease characteristics of Kaiser 
Permanente Northern California Cohort (KPNC) Stage I–III breast 
cancers, diagnosed 2000–2010

All patients
(N = 20,462)
N (%)

Breast Cancer
Death
(N = 842)

CVD
Death
(N = 696)

Age (years)

21–34 302 (1.5%) 13 (1.5%) 3 (0.4%)

35–39 571 (2.8%) 36 (4.3%) 8 (1.2%)

40–44 1340 (6.6%) 65 (7.7%) 12 (1.7%)

45–49 2167 (10.6%) 81 (9.6%) 21 (3.0%)

50–54 2604 (12.7%) 90 (10.7%) 33 (4.7%)

55–59 2962 (14.5%) 104 (12.4%) 39 (5.6%)

60–64 2866 (14.0%) 106 (12.6%) 52 (7.5%)

65–69 2482 (12.1%) 78 (9.3%) 71 (10.2%)

70–74 2004 (9.8%) 81 (9.6%) 109 (15.7%)

75 +  3164 (15.5%) 188 (22.3%) 348 (50.0%)

Race
Non-Hispanic White 14,181 (69.3%) 601 (71.4%) 531 (76.3%)

Hispanic White 1985 (9.7%) 77 (9.1%) 38 (5.5%)

Non-Hispanic Black 1500 (7.3%) 81(9.6%) 85 (12.2%)

Hispanic Black 7 (< 0.1%) 0 0

Asian/Pacific Islander 2719 (13.3%) 80 (9.5%) 40 (5.8%)

Other/Unknown 70 (0.3%) 3 (0.4%) 2 (0.2%)

Smoking status at diagnosis
Current smoker 2430 (11.9%) 109 (13.0%) 126 (18.1%)

Former smoker 3095 (24.0%) 100 (11.9%) 97 (13.9%)

Non-smoker 7389 (36.1%) 162 (19.2%) 97 (13.9%)

Unknown 7548 (36.9%) 471 (55.9%) 376 (54.0%)

Diabetes 2669 (13.1%) 104 (12.4%) 160 (23.0%)

Charlson comorbidity
0 13,130 (64.2%) 544 (64.6%) 277 (39.8%)

1–2 6137 (30.0%) 240 (28.5%) 288 (41.4%)

3 +  1163 (5.7%) 56 (6.7%) 130 (18.7%)

unknown 32 (0.2%) 2 (0.2%) 1 (0.1%)

Breast Cancer Characteristics
Bilateral
Unilateral—Right
Unilateral-Left
Unilateral—Unknown

138 (0.7%)
9842 (48.1%)
10,476 (51.2%)
6 (< .01%)

4 (0.5%) 8 (1.2%)

Surgery
None 560 (2.7%) 59 (7.0%) 39 (5.6%)

Lumpectomy 11,583 (56.6%) 270 (32.1%) 321 (46.1%)

Mastectomy 8309 (40.6%) 512 (60.8%) 334 (48.0%)

Unknown 10 (0.1%) 1 (0.1%) 2 (0.3%)

Grade
1 Well differentiated 4734 (23.1%) 37 (4.4%) 130 (18.7%)

2 Moderately differenti-
ated

8336 (40.7%) 287 (34.1%) 272 (39.1%)

3 Poorly differentiated 5481(26.8%) 424 (50.4%) 198 (28.5%)

4 Diffuse 259 (1.3%) 20 (2.4%) 7 (1.0%)

Unknown 1652 (8.1%) 74 (8.8%) 89 (12.8%)

Table 1  (continued)

All patients
(N = 20,462)
N (%)

Breast Cancer
Death
(N = 842)

CVD
Death
(N = 696)

Stage
1 10,843 (53.0%) 127 (15.1%) 294 (42.3%)

2 7806 (38.2%) 444 (52.7%) 316 (45.4%)

3 1813 (8.9%) 271 (32.2%) 86 (12.4%)

Tumor size
 ≤ 2 cm 13,727 (67.1%) 269 (32.0%) 393 (56.5%)

(2,5] cm 5723 (28.0%) 411 (48.8%) 244 (35.1%)

 > 5 cm 838 (4.1%) 117 (13.9%) 44 (6.3%)

Diffuse or Unknown 174 (0.9%) 45 (5.3%) 15 (2.2%)

ER/PR
Positive 11,917 (58.2%) 393 (46.7%) 442 (63.5%)

Negative 2689 (13.1%) 253 (30.1%) 105 (15.1%)

Unknown/not done 5856 (28.6%) 196 (23.3%) 149 (21.4%)

HER2
Positive 1862 (9.1%) 110 (13.1%) 49 (7.0%)

Negative 11,938 (58.3%) 422 (50.1%) 417 (59.9%)

Unknown/not done 6662 (32.6%) 310 (36.8%) 230 (33.1%)

Positive Lymph Nodes
0 14,150 (69.2%) 327 (71.1%) 449 (64.5%)

1–3 4429 (21.7%) 234 (21.3%) 156 (22.4%)

 > 3 1851 (9.1%) 279 (7.5%) 87 (12.5%)

None examined/
unknown

32 (0.2%) 2 (0.1%) 4 (0.6%)

Treatments received
Any chemotherapy 9639 (47.1%) 596 (70.8%) 204 (29.3%)

Taxanes 2806 (13.7%) 220 (26.1%) 47 (6.8%)

Targeted Therapy 1206 (5.9%) 78 (9.3%) 16 (2.3%)

Alkylating Agents 1626 (8.0%) 113 (13.4%) 41 (5.9%)

Antimetabolites 1061 (5.2%) 174 (20.7%) 33 (4.7%)

Vinca Alkaloids 364 (1.8%) 94 (11.2%) 14 (2.0%)

Other 1174 (5.7%) 133 (15.8%) 23 (3.3%)

No Chemotherapy 10,823 (52.9%) 246 (29.2%) 492 (70.7%)

Any hormonal therapy 8463 (41.4%) 265 (31.5%) 282 (40.5%)

Any radiation 6621(32.4%) 247(29.3%) 184 (26.4%)
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and treatment characteristics (see Table  3). The cor-
responding hazard ratios appear in Additional file  1: 
Table  S7. BC characteristics including grade, ER/PR 
status, tumor size, and nodal involvement were all sig-
nificantly associated with risk of BC death (p < 0.05), as 
expected, but also associated with CVD and other-cause 
mortality as well. Older age, current and former smok-
ing, HDL cholesterol < 35  mg/dl, ER negative disease, 
and having no surgery for BC were also associated with 
an increased risk of each cause of death. Prior history 
of CVD, higher Charlson comorbidity score, and lack 

of receipt of radiation or chemotherapy were associated 
with an increased risk of death from CVD and death 
from other causes, but not death due to BC. Due to small 
numbers of events within strata, and multivariate end-
point, we were unable to test individual drug classes in 
this model. In sensitivity analyses, the results from sepa-
rate Cox models and sub-distribution hazards models for 
each cause of death, yielded similar results to the multi-
state model. The complete case analyses also provided 
similar inferences, though with decreased statistical 
power (results not shown).

Fig. 1  Cumulative incidence of cause of death, by stage and age at breast cancer diagnosis
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To evaluate the performance of the model using the 
AUC, predicted probabilities for the outcomes of inter-
est were calculated at 3, 5 and 10 years for all patients in 
the data set (Additional file  1: Table  S4). Similar to the 
established CVD risk scores, the model performs slightly 
better for the shorter time frame, with AUCs of 0.84 and 
0.82 at 3 years versus 0.82 and 0.77 at 10 years, for CVD 
mortality and BC mortality, respectively, though per-
formance of the new model remains higher overall. The 
observed to expected number of combined BC and CVD 
deaths at 5 years predicted by the multi-state model was 
also quite accurate (O/E = 1.01, 95% CI 0.91–1.11).

Discussion
In this cohort of women diagnosed with breast cancer, 
the death rates from cardiovascular events and BC were 
roughly equivalent overall, though younger women were 
more likely to die of BC than cardiovascular events. 
Although our modeling was limited to a single health 
care organization, the KPNC cohort was very similar 
in age and other demographics to the U.S. SEER18 data 
(see Additional file: Table S8), with few exceptions (e.g., 
SEER18 has a higher percentage of Stage 3 (13.7 vs. 8.9) 

and women 75 + (19.8 vs. 15.5 compared to the KPNC 
cohort)).

Determining which BC survivors are at the greatest 
risk for CVD is of paramount importance in treating the 
entire patient, following her BC diagnosis, particularly 
given the shared risk factors for BC and CVD coupled 
with the cardiotoxic effects of many cancer therapies [4]. 
Yet, commonly used models for predicting CVD have 
not been prospectively validated in BC patients. Some 
important limitations of such models are that they were 
developed on cohorts that were younger and without 
a history of CVD events or comorbidities. The fact that 
none have been validated in a BC population is likely due 
in many settings to the lack of data on CVD risk factors 
such as blood pressure and lipids, collected around the 
time of diagnosis. To our knowledge, our study is the first 
to attempt to validate the use of these models following 
a loco-regional BC diagnosis. A key conclusion of our 
study is that an integrated model with both breast cancer 
characteristics and CVD risk factors improves prediction 
of CVD after a diagnosis of breast cancer.

We demonstrated that standard CVD prediction 
models showed moderate discrimination in our cohort, 

Table 2  Performance of CVD risk models by end-point and statistical method, KPNC Stage I-III breast cancers, diagnosed 2000–2010

* denotes complete risk factor information and required follow-up time for model evaluation

Risk Model
(model type)

Evaluation
time-point 
(years)

Events Validation
Sample
Size* (naïve)

AUC​
(95% CI)
(naïve)

AUC​
(95% CI) (with
censoring)

O/EO ratio
(95% CI)

Outcome: Hard CHD (fatal and non-fatal: Myocardial Infarction (MI), coronary insufficiency)
Framingham
2000
(Weibull AFT model)

2 304 10,211 0.70
(0.67, 0.73)

0.63
(0.61, 0.66)

0.92
(0.83, 1.03)

4 596 9529 0.74
(0.72, 0.76)

0.74
(0.72, 0.76)

0.85
(0.78, 0.92)

Framingham
2001 (Proportional Hazards (PH)Model)

5 699 8236 0.71
(0.69, 0.73)

0.70
(0.69, 0.73)

1.98
(1.83, 2.12)

10 952 1976 0.64
(0.62, 0.67)

0.65
(0.62, 0.67)

1.06
(0.99, 1.13)

Framingham recalibrated
(PH model)

5 699 8236 0.78
(0.76, 0.80)

0.77
(0.75, 0.79)

0.31
(0.29, 0.34)

10 952 1976 0.76
(0.74, 0.79)

0.74
(0.72, 0.76)

0.29
(0.27, 0.31)

CORE
(sub-distribution hazards model)

5 692 8180 0.75
(0.73, 0.77)

0.74
(0.72, 0.76)

3.30
(3.07, 3.56)

10 943 1963 0.75
(0.73, 0.78)

0.73
(0.71, 0.76)

1.72
(1.61, 1.83)

Outcome: Earliest of Any
(MI, coronary death, coronary insufficiency, angina, stroke, peripheral artery disease)
Framingham
2008 (PH Model)

10 3734 4478 0.66
(0.64, 0.68)

0.71
(0.70, 0.73)

3.53
(3.42, 3.64)

Outcome: CVD death only
SCORE
(Weibull AFT model)

10 184 1300 0.73
(0.69, 0.78)

0.74
(0.70, 0.78)

0.44
(0.38, 0.51)

SCORE OP
(PH model)

10 184 1300 0.76
(0.72, 0.80)

0.76
(0.73, 0.81)

0.22
(0.19, 0.25)
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Table 3  Multi-state Model for Cause of Death, KPNC Cohort Stage I-III breast cancers, diagnosed 2000–2010

CVD Mortality
696 events
HR (95%CI)

Breast Cancer
Mortality
842 events
HR (95% CI)

All Other Causes
1191 events
HR (95%CI)

Age at diagnosis categories
21–39 Reference Reference Reference

40–49 0.81 (0.13,1.49) 1.09 (0.76, 1.42) 0.63 (0.21, 1.05)

50–54 1.03 (0.34,1.72) 0.97 (0.62, 1.32) 0.65 (0.21, 1.09)

55–59 1.04 (0.36,1.72) 1.11 (0.77, 1.45) 1.02 (0.61, 1.43)

60–64 1.34 (0.68,2.00) 1.30 (0.96, 1.64) 1.04 (0.63, 1.45)

65–69 1.88 (1.23,2.53) 1.19 (0.83, 1.55) 1.44 (1.04, 1.84)

70–74 3.40 (2.76,4.04) 1.65 (1.29, 2.01) 2.45 (2.06, 2.84)

75 +  6.27 (5.64,6.90) 2.47 (2.15, 2.79) 4.02 (3.63, 4.41)

Race
White Reference Reference Reference

Black 1.78 (1.55, 2.01) 1.27 (1.04, 1.50) 1.13 (0.92,1.34)

Asian/Pacific Islander 0.70 (0.37, 1.03) 0.77 (0.53, 1.01) 0.68 (0.44, 0.92)

Other/Unknown 1.04 (0.35, 2.43) 1.27 (0.13, 2.41) 0.96 (0.18, 2.10)

Smoking Status
Current 2.59 (2.32,2.86) 1.96 (1.71, 2.21) 3.08 (2.87, 3.29)

Former 1.36 (1.09,1.63) 1.33 (1.08, 1.58) 1.49 (1.28, 1.70)

Non-smoker Reference Reference Reference

Unknown 2.28 (2.07,2.49) 2.29 (2.11, 2.47) 2.69 (2.52, 2.86)

History of CVD
No prior history Reference – Reference

History of event 2.10 (1.89,2.31) – 1.28 (1.11, 1.45)

Unknown 1.53 (1.19,1.87) – 1.44 (1.17, 1.71)

HDL Cholesterol
 < 35 1.54 (1.14,1.94) 1.92 (1.59, 2.25) 1.91 (1.62, 2.20)

35–44 1.04 (0.79,1.29) 1.28 (1.07, 1.49) 1.14 (0.95, 1.33)

45–49 0.84 (0.54,1.14) 0.90 (0.65, 1.15) 1.04 (0.83, 1.25)

50–59 0.81 (0.58,1.04) 0.99 (0.80, 1.18) 0.97 (0.80, 1.14)

60 +  Reference Reference Reference

Unknown 1.32 (1.06, 1.58) 1.57 (1.36, 1.78) 1.49 (1.27, 1.71)

Charlson comorbidity
0 Reference – Reference

1–2 1.44 (1.26,1.62) – 1.54 (1.41, 1.67)

3 +  2.28 (2.03,2.53) – 2.55 (2.34, 2.76)

Grade
Well differentiated Reference Reference Reference

Moderately differentiated 1.11 (0.90,1.32) 2.86 (2.51, 3.21) 1.18 (1.02, 1.34)

Poorly differentiated 1.45 (1.20,1.70) 4.34 (3.99, 4.69) 1.56 (1.37, 1.75)

Diffuse 1.05 (0.28,1.82) 4.59 (4.03, 5.15) 1.02 (0.43, 1.61)

Unknown 1.52 (1.24, 1.80) 2.63 (2.23, 3.03) 1.12 (0.89, 1.35)

Tumor size
 ≤ 2 cm Reference Reference Reference

(2,5] cm 1.43 (1.25,1.61) 2.13 (1.96, 2.30) 1.38 (1.24, 1.52)

 > 5 cm 1.91 (1.57, 2.25) 3.19 (2.95, 3.43) 2.01 (1.75, 2.27)

Diffuse or Unknown 3.74 (3.20,4.28) 5.26 (4.92, 5.60) 2.91 (2.43, 3.39)

Lymph Nodes Involved
0 Reference Reference Reference
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though performance was widely influenced by the time 
horizon for prediction of CVD outcome with better 
performance in shorter time horizons, likely due to the 
smaller risk of a competing death in that time frame and 
more complete follow-up of patients. The models per-
formed better using a shorter time window and with 
more recent risk factor information suggesting that they 
could be used clinically at regular windows while women 
are still undergoing BC treatment.

The most common BC molecular subtype, hormone 
receptor positive (HR +) cancers, are typically treated 
for 5–10 years with endocrine therapies. This means that 
women are seen regularly for breast cancer treatment 
and thus our models which performed best in shorter 
time horizons could be feasible as many women are still 
being actively followed and treated. Therefore, in evaluat-
ing these models, we conclude that they may be useful in 
most women, particularly after age 65 years when women 
affected with BC may be more likely to die of CVD than 
BC [34], and recommend that no more than a 2–4 year 
prediction window be calculated based on these models. 
The limited utility of standard CVD prediction models 
for long-term risk prediction in BC survivors is concern-
ing, especially given that higher CVD risk in BC survivors 
compared with the general population does not manifest 
itself until about 7 years after the diagnosis of BC [7].

Changes in definition of the outcome measure (e.g. 
morbidity versus mortality) across CVD models also pre-
sent challenges in making comparisons of model perfor-
mance. While moderate discrimination was seen in both 
the models predicting mortality and those predicting 

non-fatal events, it is not clear which endpoint may be 
more meaningful clinically in a cancer survivor popula-
tion. For model validation, a mortality endpoint is less 
subjective, while non-fatal events may not be captured 
routinely outside of a clinical trial setting. Additionally, 
in our population, at least 14% of women already have a 
documented CVD event prior to their BC diagnosis and 
are likely being treated or monitored for a cardiovascu-
lar condition, thus predicting additional non-fatal events 
may be of less concern.

Another factor contributing to the poor performance 
of the established cardiovascular models could be differ-
ences in risk factor distribution, including missing risk 
factor data, between the original cohorts in which the 
models were developed, and our older, contemporary, 
comorbid cohort, as seen in Additional file: Table  S5. 
For example, in the original Framingham cohort, 62% of 
women were non- smokers, versus only 36% in our cur-
rent cohort, with an additional 37% missing smoking sta-
tus and excluded from the validation analysis. Similarly, 
blood pressure-lowering medication was not routinely 
used in the original Framingham cohort, versus 27% of 
the current cohort having a history of its use, and sub-
sequently, a lower overall distribution of blood pressure 
compared to the original Framingham women. However, 
even with recalibration of the Framingham model to our 
data set (Additional file 1: Table S6), model performance 
was not improved, likely due to the handling (ignoring) 
of deaths in the absence of a CVD event. This becomes 
especially problematic for longer-term prediction hori-
zons, such as 5–10 years.

Table 3  (continued)

CVD Mortality
696 events
HR (95%CI)

Breast Cancer
Mortality
842 events
HR (95% CI)

All Other Causes
1191 events
HR (95%CI)

1–3 1.23 (1.03,1.43) 1.71 (1.54, 1.88) 1.13 (0.98, 1.28)

4–9 1.51 (1.21,1.81) 3.04 (2.83, 3.25) 1.55 (1.32, 1.78)

10 +  2.35 (1.95,2.75) 6.48 (6.25, 6.71) 1.90 (1.58, 2.22)

Unknown 2.52 (1.51,3.53) 2.13 (0.72, 3.54) –

Radiation 0.82 (0.64,0.99) – 0.87 (0.73, 1.01)

Chemotherapy 0.77 (0.55,0.99) – 0.83 (0.66, 1.00)

Surgery
None 1.95 (1.59,2.31) 3.25 (2.95, 3.55) 1.98 (1.69, 2.27)

Lumpectomy Reference Reference Reference

Mastectomy 1.05 (0.88,1.22) 1.33 (1.17, 1.49) 1.07 (0.94, 1.20)

Unknown 3.35 (1.93,4.77) 1.96 (0.03, 3.95) –

ER/PR
Positive 0.82 (0.59,1.05) 0.48 (0.31, 0.65) 0.77 (0.60, 0.94)

Negative Reference Reference Reference

Unknown/not done 0.67 (0.41,0.93) 0.53 (0.34, 0.72) 0.63 (0.43, 0.83)
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For longer-term prediction it is important to account 
for competing causes of mortality, thus this ques-
tion supports the use of a multi-state model that can 
simultaneously model the competing failure types. 
Our findings that increased stage of BC at diagnosis 
was also significantly associated with CVD and all-
cause mortality indicate that beyond traditional CVD 
risk factors and increased age. Whether this associa-
tion between stage and CVD mortality reflects poorer 
underlying health in general by factors not measured in 
these models, barriers to health care access and qual-
ity (even within a large health care organization), and/
or treatment related factors is unclear. However, what 
this association does suggest though is that patients 
with more advanced disease at any age should be aware 
of their increased risk of mortality from other causes 
following their primary BC treatment. For women 
less than age 50  years at BC diagnosis, managing the 
risk of BC recurrence and mortality remains of pri-
mary concern, but those with increased cancer burden 
may also be at elevated risk of CVD mortality, despite 
their young age. This could be in part, due to the early 
and delayed cardio-toxicities of the cancer treatment 
[4]. For example, the risk of heart failure is shown to 
increase with increasing cumulative doses of anthracy-
clines, which have been commonly used to treat early-
stage BC for decades (5% versus 48% risk at a dose of 
400 mg/m2 versus 700 mg/m2, respectively) (4). Incor-
porating detailed information about the treatment of 
BC into CVD risk prediction models, including the 
type, cumulative dose, and duration of therapy, might 
considerably improve performance. However, more 
work is needed in this area, given that we were unable 
to formally examine the relationship between individ-
ual drugs and outcomes using the multi-state model.

Conclusions
We found that many BC prognostic factors were signifi-
cantly associated with both BC mortality and CVD mor-
tality. However, our data were limited by the fact that 
many of the women had prior cardiovascular events, may 
not have had blood lipids measured within the desired 
time frame of the BC diagnosis, were subject to missing 
data, such as detailed smoking and chemotherapy infor-
mation, and were lacking additional known risk factors 
including BMI, diet and alcohol use. While our multi-
state model requires further validation from an external 
source, it showed good discrimination in our cohort and 
might serve as a first line for identifying subgroups of 
patients that may be at increased risk of cardiovascular 
events based on readily accessible covariates.
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