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Abstract

Background: Breast cancer intrinsic molecular subtype (IMS) as classified by the expression-based PAM50 assay is
considered a strong prognostic feature, even when controlled for by standard clinicopathological features such as
age, grade, and nodal status, yet the molecular testing required to elucidate these subtypes is not routinely performed.
Furthermore, when such bulk assays as RNA sequencing are performed, intratumoral heterogeneity that may affect
prognosis and therapeutic decision-making can be missed.

Methods: As a more facile and readily available method for determining IMS in breast cancer, we developed a deep
learning approach for approximating PAM50 intrinsic subtyping using only whole-slide images of H&E-stained breast
biopsy tissue sections. This algorithm was trained on images from 443 tumors that had previously undergone PAM50
subtyping to classify small patches of the images into four major molecular subtypes—Basal-like, HER2-enriched,
Luminal A, and Luminal B—as well as Basal vs. non-Basal. The algorithm was subsequently used for subtype classification
of a held-out set of 222 tumors.

Results: This deep learning image-based classifier correctly subtyped the majority of samples in the held-out set of
tumors. However, in many cases, significant heterogeneity was observed in assigned subtypes across patches from
within a single whole-slide image. We performed further analysis of heterogeneity, focusing on contrasting Luminal A
and Basal-like subtypes because classifications from our deep learning algorithm-—similar to PAM50—are associated
with significant differences in survival between these two subtypes. Patients with tumors classified as heterogeneous
were found to have survival intermediate between Luminal A and Basal patients, as well as more varied levels of
hormone receptor expression patterns.

Conclusions: Here, we present a method for minimizing manual work required to identify cancer-rich patches among
all multiscale patches in H&E-stained WSIs that can be generalized to any indication. These results suggest that
advanced deep machine learning methods that use only routinely collected whole-slide images can approximate RNA-
seg-based molecular tests such as PAM50 and, importantly, may increase detection of heterogeneous tumors that may
require more detailed subtype analysis.
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Background

Immunohistochemistry (IHC) or in situ hybridization
(ISH) assays are well-established methods used to distin-
guish subtypes in breast cancer (BC) based on hormone
receptor statuses [1]. Increasingly, RNA-based signature
assays such as MammaPrint, Oncotype DX, and Pre-
dictor Analysis of Microarray 50 (PAM50) [2] are being
employed as supplementary prognostic indicators due to
studies demonstrating more significant differential sur-
vival between identified subtypes when compared to
standard clinicopathological factors [3—5]. In particular,
PAMS50 intrinsic molecular subtyping, as part of the
NanoString Prosigna [6] and the Agendia BluePrint
panel [7], is becoming more widely used in early-stage
breast cancers to determine the likelihood of responding
to chemotherapy. The PAMS50-defined intrinsic molecu-
lar subtype (IMS) classifications include Luminal A
(LumA), Luminal B (LumB), HER2-enriched (HER2),
Basal-like (Basal), and Normal-like (Normal); while there
is some correlation between receptor status and IMS,
the latter is determined by consideration of gene expres-
sion beyond receptors. The molecular signature-based
tests are not, however, as ubiquitously employed as
IHC-based receptor subtyping in part due to their high
cost, extended processing times, and requirement for ap-
propriate tissue samples. Thus, a method for tumor clas-
sification beyond receptor subtyping that approximates
PAM50 subtyping that is practical, cost-effective, and
utilizes readily available samples could be of great utility.

Unlike the samples needed for molecular signature assays,
hematoxylin and eosin (H&E)-stained biopsy slides are
routinely collected during pathological examination, and are
often digitally recorded as whole-slide images (WSIs) [8].

Machine learning approaches can extract knowledge
from WSIs beyond that of which a human is capable, as ev-
idenced by the many computer-assisted diagnosis (CAD)
software solutions created to augment pathological inspec-
tion workflows [8]. It has been demonstrated previously
that even genetic subtyping can be approximated using
WSIs as input to relatively simple machine learning algo-
rithms [9].

Deep learning methods are an emerging set of influential
machine learning technologies well suited to these image-
based classification tasks [10]. Recent advances in both com-
putational power and convolutional network architectures
have greatly increased the applicability of these techniques
for several new domains in biology including omics analysis,
biomedical signal processing, and biomedical imaging [11].
Specifically, deep learning has been applied to greatly im-
proving detection of regions of interest in BC WSIs [12] and
impressive progress has been made in application of deep
learning to BC diagnosis from images [13—15].

Of particular interest in WSI analysis is the use of
multiscale patch representations that allow concurrent
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use of high-zoom patches that capture cellular level infor-
mation with lower-zoom patches that capture global inter-
dependence of tissue structures [16—18]. Bejnordi et al.
used multiscale patch representation of WSIs to build
highly accurate context-aware stacked convolutional neural
networks (CNN) for distinguishing between invasive ductal
carcinomas (IDC) and benign ductal carcinoma in situ
(DCIS) [19]. Similarly, Liu et al. used this same approach to
accurately detect whether biopsy samples from nearby
lymph node tissue were positive for metastases [20].

While use of multiscale patch representations may in-
crease performance in WSI-based classification tasks,
the computational complexity of training on all possible
multiscale patches from gigapixel WSIs is substantial. As
such, previous studies have employed strategies that
limit the analyzed patches to a subset of the total image.
For example, in a study of subtypes in BC, Verma et al.
used a minimum filter on the blue—yellow channel at x
20 magnification to select patches rich in epithelial cells
[21]. Similarly, in a study of non-small cell lung cancer
WSIs, Yu et al. successfully used only the top ten cell-
dense 1000 x 1000 pixel (250 x 250 um) patches at x 40
magnification. However, both of these strategies lever-
aged tissue-specific knowledge of cell morphology in
their respective indications [22]. Generalizable methods
for focusing on information-rich image patches are an
area of ongoing research.

Here, we present a method for minimizing manual
work required to identify cancer-rich patches among all
multiscale patches in H&E-stained WSIs that can be
generalized to any indication. A minimal number of
such cancer-rich WSI patches were then used to classify
tumors into IMS, i.e.,, PAM50 WSI-based subtypes.

Similarly to the method presented here, Couture et al.
[23] recently applied deep learning to image analysis to
predict BC grade, ER status, and both histologic and in-
trinsic subtype when modeled as binary classifiers (i.e.,
Basal-like vs. non-Basal-like) and achieved > 75% accur-
acy, supporting development of such classifiers. They
used 1 mm cores from pathologist-marked areas (1-4
per WSI) for tissue microarray (TMA) construction, and
the authors noted that cores taken from a single slide
often classify as different intrinsic subtypes, which may
be evidence of heterogeneity. However, characterizing
the extent of intrinsic subtype heterogeneity from TMAs
would be extremely difficult even with multiple small
cores from a single WSL

One distinct advantage of the patch-based WSI-based
IMS classifier described here is retention of the ability to
observe intratumoral heterogeneity directly without
resorting to numerical deconvolution methods. We lever-
aged this patch-based system to identify tumors present-
ing at least two molecular subtypes within the same tissue
section, and support these cases as mixed populations
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using independent data including overall survival. Others
have previously used image-based measures of heterogen-
eity as prognostic biomarkers [24], but to our knowledge,
this is the first study of prognostic intrinsic subtype het-
erogeneity identified in diagnostic WSIs.

Methods

Constructing multiscale patch representations

All diagnostic WSIs of H&E-stained sections from
formalin-fixed paraffin-embedded (FFPE) blocks col-
lected from 1097 patients with invasive BC were ob-
tained from The Cancer Genome Atlas (TCGA) data
sources [25], resulting in a collection of 1142 diagnostic
WSIs. WSIs were tiled into 1600 x 1600 pixel (800 x
800 um) patches at the x 20 zoom level. All 1600 x 1600
pixel patches were filtered for a minimum color variance
to eliminate empty (background) patches from further
processing. Each 1600 x 1600 pixel 20x patch was con-
verted into 400 x 400 pixel patches at x 5, x 10, and x 20
magnification scales centered on the same point by
down-sampling and cropping to the center 400 x 400
pixels. Next, a deep CNN was used to transform 2D
color patches into classifiable 1D descriptive vectors as
follows: 2D patches were input into a version of the In-
ception v3 network (Google) [26] pre-trained on the
ImageNet database of images to classify a wide variety of
objects. The representations at the final layer of the net-
work (the logits layer) were then extracted. This process
maps each 400 x 400 pixel color patch into highly de-
scriptive vectors with 2048 dimensions at each zoom
level. Principal component analysis (PCA) was used to
reduce dimensions while retaining >96% variance. Fi-
nally, vectors for all three zoom levels were concatenated
into one multiscale patch representation.

Enriching for cancer patches

For training, 238,728 multiscale patch representations
were randomly selected. These representations were
grouped using k-means clustering; the number of clus-
ters was determined empirically. Clusters with sufficient
cellularity were investigated further. A pathologist evalu-
ated 336 representations for tumor content. The clusters
were assessed for cancer enrichment by observing the
percentage of patches within said clusters that were also
positive for tumor content. For each WSI, up to 80
patches that fell within the cancer-rich clusters were
used for further analysis. If a WSI contained more than
80 cancer-rich patches, only 80 were selected at random.

PAM50 classification

Both PAM50 expression-based molecular subtyping and
survival data were available for 789 out of 1097 BC pa-
tients used for our WSI-based IMS classifier development;
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the subtypes comprised 50.4% LumA, 21.7% LumB, 16.9%
Basal, 8.1% HER2, and 2.9% Normal.

Because a large number of example patches are gener-
ated from each patient, ensuring that the majority of
patches from each training patient are of one subtype is
important. In order to remove likely heterogeneous pa-
tients from the training pool to allow training utilizing
only the most strictly defined subtype, patients were
assessed for how closely their gene expression as deter-
mined by RNAseq associated with other patients from
their assigned subtype. Gene expression values (as RSEM
transcripts per million values) for the 50 PAM50 genes
were obtained from TCGA sources (https://gdac.broad-
institute.org). These expression profiles were used to
cluster all 789 patients in the PCA-space, an unsuper-
vised analytical method for gene expression data that
provides a picture of the overall distribution of the ana-
lyzed dataset [27]. Patients were deemed low-confidence
if the Euclidean distance to their assigned subtype cen-
troid was >33% larger than the distance to the nearest
subtype centroid (Additional file 1: Figure S1). A total of
104 patients were assigned the low-confidence (i.e., likely
heterogenous) label; elimination of such cases for train-
ing is a method used by others [23].

The normal-like subtype (tumor tissue with gene ex-
pression similar to normal breast tissue) was deemed in-
sufficiently represented for multiclass classification (n =
23) and dropped from training, resulting in a 4-way classi-
fication task. The 766 non-normal-like patients were split
into training (n = 443; 58%) and validation (n = 323; 42%)
datasets. All 101 non-normal-like low-confidence patients
were assigned to the validation set. Patients in the training
dataset were further split into 5 pairs of training and test-
ing datasets (ie., fivefold cross-validation). Within each
fold, 60 multiscale cancer-enriched patches were selected
per training WSI and used to train a multiclass one-vs-
rest support vector machine (SVM) with radial basis func-
tion (RBF) kernel. Trained models were used to classify 80
multiscale cancer-enriched patches from each testing
WSI, then aggregated via majority voting to classify at the
tumor level. In the few cases where a patient had multiple
diagnostic slides, a voting mechanism was used to assign
the patient’s overall IMS label. A final multiclass one-vs-
rest SVM with RBF kernel classifier was trained on all 443
training WSIs and analyzed for subtyping accuracy in the
validation set of unseen patients.

Detecting subtype heterogeneity

Analysis of heterogeneity focused on detecting the two
subtypes with most dissimilar survival characteristics
(LumA and Basal). To label patients as LumA by image
(LumApyg), a threshold for the minimum percentage of
patches classified as LumA was determined using You-
den’s analysis [28] in the training set as follows: patient
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tissue was assigned “LumA” or “not LumA” labels ac-
cording to PAM50 molecular subtyping, then all per-
centages of LumA patches were considered and the
threshold that maximizes the true positive rate (TPR) to
false positive rate (FPR) ratio was selected. A threshold
for calling WSI Basal by image (Basalpg) was found
similarly. Patients were categorized as heterogeneous
(HET), LumAjyg, and Basalpg using these pre-trained
thresholds. Heterogeneity was supported by analysis of
Mann-Whitney U tests of HR expression and Kaplan-
Meier survival curves with Cox proportional hazard
analysis.

Binary classification: Basal vs. non-Basal

Based on the findings from the above initial establish-
ment of the classifier, we sought to increase its prognos-
tic utility by re-defining subtyping as Basal or non-Basal
(HER2, LumA, LumB, and Normal). To do this, we used
the top 60 multiscale patches from 582 WSIs (92 Basal
and 490 non-Basal) to train a binary linear SVM classi-
fier with C =1.0. The training data had 34,745 multiscale
patches (15.84% Basal and 84.16% non-Basal) and
resulted in patch-level train accuracy of 90.58% (with
sensitivity = 64.72% and specificity = 95.44%).

In addition, to improve the sensitivity of the Basal vs.
non-Basal classifier, we employed a class balance tech-
nique of training patches to train another “balanced” lin-
ear SVM (C=1.0) classifier. That is, a set of 5.5K
multiscale patches were randomly selected from the
Basal and non-Basal classes.

Results

Image-based IMS classifier pipeline design

The proposed system for classifying H&E-stained diagnos-
tic WSIs into intrinsic molecular subtypes is shown in
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Fig. 1. A fixed-size multiscale patch-based approach
was selected to allow analysis of regions as well as
capture micro- and macroscopic characteristics simul-
taneously. The Inception v3 logits representation of
color patches was used to convert color representa-
tions into descriptor vectors because it is particularly
well suited to multiscale patch representation. A sys-
tem for filtering analyzed locations to cancer-enriched
locations (as opposed to extracellular matrix or adja-
cent normal tissue) was employed to reduce computa-
tional complexity and ensure hygienic input. A
multiclass SVM classification algorithm was trained
due to superior performance on large datasets.

Multiscale patch representations

The average for the 1142 WSIs from 1097 BC
patients was 5465 x 11,641 pixels (10.93 x 23.28 mm)
at the x5 magnification level, resulting in 2,709,065
total analysis locations. After applying color filtering
to remove non-tissue areas, 1,985,745 locations
remained. Each location was down-sampled from the
x20 zoom level to represent x 20, x 10, and x5
zoom levels centered on the same location, resulting
in 5,957,235,400 x 400 pixel color patches. These
two-dimensional color patches were converted to
vectors of length 2048 by the Inception v3 logits
layer. PCA was applied to 5x, 10x, and 20x vectors
independently, and various levels of dimensionality
reduction were explored (Additional file 1: Table
S1). A length of 768 components was found to
retain >96% variance in each zoom level. After con-
verting images to multiscale patch representations,
the total dataset size is a matrix of 1,985,745 loca-
tions x 2304 features.
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Fig. 1 Proposed WSI-based IMS classifier and heterogeneity detection system. WSIs are broken into multiscale 400px x 400px patches and
converted to descriptive tensors using the Inception v3 neural net architecture. A subset of cancer-enriched patches is selected to summarize WSI
tumor content. Each patch is assigned a subtype in a 4-way classifier (Basal-like, HER2-enriched, Luminal A, and Luminal B). WSI-based subtype
classifications can be made by employing a voting mechanism upon the patch-based results. Heterogeneity analysis is further performed on WSls
displaying significant concurrent Basal-like and Luminal A image-based predictions
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Cancer enrichment

From the total of 238,728 multiscale patch representa-
tions randomly selected for defining cancer-enriched
centroids, we identified 24 clusters using k-means clus-
tering. Fourteen of the 24 clusters were sufficiently pop-
ulated with cellular structures for further analysis. A
pathologist annotated 24 patches from each cluster (336
total) to determine whether or not the patch contained
tumor tissue (Additional file 1: Table S2). Five leading
clusters had mostly cancer-rich samples (>80% of
patches are cancer-rich). Additional file 1: Figure S2 pre-
sents examples of these five clusters and their prevalence
in the patch-level population.

WSl-based IMS classification

Table 1 summarizes the accuracy of subtype classifications
at the patch, WSI, and patient level in held-out test sam-
ples in fivefold cross-validation of the training samples.
On average, 354 WSIs were used to train and 94 were
used to test accuracy. Within the held-out test WSIs, indi-
vidual patches were classified less accurately than when
aggregated into a single WSI-level classification (58.6% vs.
66.1% correct). When multiple diagnostic WSIs are avail-
able for a given patient, aggregating across slides may also
increase accuracy (66.1% vs. 67.3% correct).

Table 2 shows performance in two validation sets: one
unselected group of 222 patients, and a second group con-
taining 101 patients with low-confidence IMS classifica-
tions. Within the group of unselected patients, tumor
subtype classification performance was similar to the cross-
validated setting (65.9% vs. 67.3% correct). The main
sources of error were misclassification of LumA tumors as
LumB and of Basal into other subtypes. Within the low-
confidence patients, overall subtyping accuracy was much
lower (56.7% correct), potentially due to subtype heterogen-
eity. It should be noted that the automatic masking system
used is not capable of determining which patches are non-
cancer rich within the cancer-rich clusters; thus, there is
possibility that in some cases, heterogeneity comes from
non-cancer patches. Figure 2 shows patch-level subtype
classification results on four WSI examples.
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The WSI-based IMS classifier identifies LumA, Basal, and
HET tumors

Of the five molecularly based classifications for all BC
patients in TCGA, the two major subtypes with good
survival separation are LumA and Basal as shown in the
Kaplan-Meier survival curves in Fig. 3a; the hazard ratio
(HR) =1.25 and p=0.39 characterize the difference be-
tween the two curves. WSI-based IMS reveals four sub-
types—LumA, LumB, HER2, and Basal—with LumA and
Basal also showing good survival-curve separation, as
shown in Fig. 3b (HR =1.59; p=0.06). This side-by-side
comparison reveals good correlation of the WSI- to mo-
lecularly based classification and survival. Figure 3b also
reveals that the WSI-based IMS classifier provides more
distinctive differential prognosis between LumA and Basal
subtypes than molecular IMS in the TCGA dataset.

The WSI-based classifier identified a majority (255/
400) of molecularly subtyped LumA patients as LumA;
the rest (175) were classified as Basal (31), HER2, or
LumB. The discrepancy is not necessarily an error of
WSI-based classification because other factors such as
the levels of two key breast-related receptors—the estro-
gen receptor alpha (ERa/ESRI) and progesterone recep-
tor (PR/PGR)—support the accuracy of the WSI-IMS
call. For example, the WSI-IMS Basal group expresses
lower levels of ESR1 and PGR than the WSI-IMS LumA
group (Fig. 3c). Results were similar for the TCGA mo-
lecularly subtyped Basal-like cohort (133) where our
image-based algorithm identified a majority (73) as Basal-
like patients, the rest (60) as HER2, LumA (15), or LumB.
The LumAp,g group (molecularly identified as Basal, but
identified as LumAyyg by proposed system, which has 15
patients) expresses higher levels of key hormone receptors
when compared to Basalp,g group (Fig. 3d).

In Additional file 1: Figure S3, analyses performed for
Fig. 3 above were repeated, but using the test data only for
unselected and low-confidence (patients in Table 2). Thus,
fewer patients as compared to Fig. 3 above are repre-
sented. The Kaplan-Meier curves for LumA and Basal
based on molecular PAM50 calls have an HR = 1.27 and
log-rank tests of p=0.60 (Additional file 1: Figure S3a);
based on WSI-IMS calls, they are HR = 1.66 and log-rank

Table 1 Molecular subtyping accuracy across folds. Sample size and performance statistics within the held-out test set across

fivefold cross-validation

No. of patches No. of WSIs No. of patients Patch-level accuracy (%) WSI-level accuracy (%) Patient-level accuracy (%)
Fold1 7505 95 92 6047 70.53 71.74
Fold2 7501 94 89 56.97 67.02 6742
Fold3 7581 95 88 57 67.37 69.32
Fold4 7564 95 86 59.56 65.26 65.12
Fold5 7420 93 88 59.1 60.22 62.5
Average 7514.2 94.4 88.6 5862 66.1 67.27
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Table 2 Molecular subtyping error and accuracy in two test settings. Confusion matrices between true labels (RNA-seg-based IMS in
columns) and predicted labels (WSI-based IMS in rows) at the patient-level for unselected (left) and low-confidence (right) by RNA-
seg-based classification

Unselected test patients (N=222) Low-confidence test patients (N=101)

Basal-like HER2-enriched Luminal A Luminal B Basal-like HER2-enriched Luminal A Luminal B
Basal-like 13 09 09 0 0.96 0 0 0
HER2-enriched 448 179 224 045 0.96 0 0 0
Luminal A 1.35 1.79 46.19 269 4.81 1.92 43.27 1.92
Luminal B 6.73 09 11.66 493 6.73 288 24.04 125

Patient-level accuracy 65.92% Patient-level accuracy 56.73%

tests p =0.11 (Additional file 1: Figure S3b). The receptor  samples. Visual evidence for heterogeneity is shown in
expression results are similar to those in Fig. 3. Fig. 4a where a Basal patient based on molecular

To define LumAy,g and Basalpg patients in Fig. 3b, PAM50 was identified as HET by the WSI-based IMS.
thresholds that maximized agreement between patch- The diagnostic H&E WSI showed subpopulations of
based classifications and molecular-based classifications  both LumA and Basal patches.
were identified using Youden’s analysis (Additional file 1: HET tumors detected by the proposed WSI-based IMS
Figure S4). A threshold of at least 63.7% of patches classi-  system are intermediate between LumApyg and Basalpig
fying as LumA was found to maximize agreement between  populations based on hormone (Fig. 4b) receptors. Basalpyg
molecular-based LumA and IMG-based LumA classifica- and LumAp,g tumor distributions are separated based on
tion, with a true positive rate (TPR) of 0.80 and false posi- ~ Mann-Whitney U/ test with p=1.02x 107> in ESR1 and
tive rate (FPR) of 0.15. At this threshold, 346 patients p=3.40x 10 in PGR. Furthermore, Fig. 4c shows that
were classified as LumApyg by the WSI-based IMS algo-  while LumApg and Basalpg have differential survival
rithm. Similarly, a threshold of at least 40.5% patches clas-  characteristics, the survival of patients with HET tumors is
sifying as Basal-like maximized agreement with molecular  not significantly distinct from either subtype so can be in-
Basal-like classification, with TPR of 0.81 and FPR of 0.14.  ferred to be intermediate between LumA ;g and Basaljc.
This resulted in assigning 142 patients as Basalpg.

Furthermore, 74 tumor tissue samples with >33% of  Application of the Basal/non-Basal binary classifier
patches classified as Basal and > 33% of patches classified  The binary classifier was utilized to generate WSI-level
as LumA were considered possibly heterogeneous (HET)  results for validation WSIs. The accuracy of patch-level
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Fig. 3 WSI-based IMS vs. RNA-seg-based molecular PAMS50. a Kaplan-Meier curves for Luminal A and Basal-like based on molecular PAM50 calls
with HR=1.25 and log-rank tests p = 0.39 (n = 533). b Kaplan-Meier curves for Luminal A and Basal-like based on WSI-IMS calls with HR = 1.59 and
log-rank tests p=0.06 (n =488). ¢ All the cases analyzed were molecularly classified as LumA, but the WSI-based system classified some of these
(n=31) as Basal (yellow); the expression levels of ESR1 and PGR for cases WSI-subtyped as Basal were lower compared to confirmed LumA (blue).
d Conversely, the receptor levels of molecularly subtyped Basal cases WSI-subtyped to be LumA (n=15) are higher than confirmed Basal cases

train performance for the binary classifier is shown in
Additional file 1: Table S3.

This validation set included 258 WSIs (44 Basal and
214 non-Basal). The top 80 multiscale patches from val-
idation WSIs gave a ROC AUC of 0.8259 and accuracy
of 86.82% (sensitivity = 38.64% and specificity = 96.73%).
Notice that this accuracy was achieved with a percentage
of 15.84% Basal patches in the training set.

The balanced Basal vs. non-Basal classifier improved the
overall performance when applied to the validation set,
achieving a WSI-level ROC AUC of 0.8607 with accuracy
of 87.21% (sensitivity =68.18% and specificity = 91.12%).
The patch-level train performance of this balanced Basal/

non-Basal classifier is shown in Additional file 1: Table S4.
The overall performance of the Basal vs. non-Basal and
the balanced Basal vs. non-Basal classifiers is shown in
Additional file 1: Table S5.

Discussion

Presented here is a system for breast cancer molecular
subtype classification using deep learning patch represen-
tations of H&E-stained WSIs. Conventionally, such classi-
fication is only accomplished using gene expression
signatures such as those generated by PAM50; however,
the proposed WSI-based IMS classifier methodology pre-
sented herein shows promising performance with overall
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Fig. 4 Evidence for heterogeneity. a An example of a HET WSI with markup on patches predicted as Basal-like and LumA. b Expression levels of
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each pair of settings. Inputs are Basaljg, HET, and LumAyg cohorts as defined by the WSI-based IMS system. ¢ Kaplan-Meier curves for Basaljyc,
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Days

concordance with molecular-based classification of
65.92% and the ability to detect the most aggressive sub-
type, Basal, with 87% accuracy. Absence of concordance
does not necessarily mean the tumor is inaccurately
subtyped, as our results on key receptor expression sug-
gest. Rather, application of our methodology may prompt
further investigation of subtype accuracy as based on
PAMS50.

To increase veracity of training examples, we elimi-
nated low-confidence samples; however, even with puri-
fied training labels, many of the expression-based
characteristics defined by PAM50 genes may not result
in visually (image) discernable features [29], leading in
part to the observed reduction in concordance between
our image-based classifier and expression-based PAM50
subtyping. Specifically, our analysis shows that this WSI-
based IMS classifier is highly sensitive to expression of
key cell-surface receptors ERa/ESRI and PR/PGR (see
Fig. 3¢, Fig. 3d, and Additional file 1: Figure S4). Despite
some disparity in subtyping results between expression-
based PAM50 subtyping and this image-based analysis
that utilizes morphological characteristics, the WSI-
based IMS classifier is not inferior to PAM50 in prog-
nostic capability: in fact, in this cohort, the image-based
classifier is more prognostic for differential survival be-
tween LumA and Basal patients than molecular PAM50
subtyping.

Intratumoral heterogeneity, common in breast tu-
mors—especially in triple-negative breast cancer [30]—
may play a role in reducing concordance between our
WSI-based IMS classifier and expression-based subtyping.
The methodology presented here summarizes patches into
a patient-level classification by majority area, whereas ex-
pression profiles are summaries based on total transcript
counts. As such, concordance of the deep learning classi-
fier with expression-based subtyping may be improved in
the future by increasing weight given to cell-dense or tran-
scriptionally overactive patches.

Many tumor heterogeneity models exist, such as
cancer stem cells (CSCs) and the clonal evolution model;
recently developed lineage-tracing and cell-ablation
methods have furthered understanding of the role of the
former in cancer [31]. Figure 4a shows that tumor het-
erogeneity can occur on a small (~ 100 um) or large (~
10 mm) scale; the solid tumor heterogeneity model must
take this spatial information into account.

Because of its sensitivity to subclonal diversity, our WSI-
based IMS classifier may have novel application as a
method for detecting intratumoral heterogeneity. Inspec-
tion of tumor biopsy tissues that were misclassified revealed
patterns of discordant subtypes at the patch level. Further
evidence that these tumors are in fact heterogeneous popu-
lations was found in hormone-receptor expression levels
and survival characteristics. Specifically, patients with tu-
mors that were classified as LumA subtype but had Basal
subclones have poorer survival compared to those with
homogeneous LumA tumors. The specific regions identi-
fied by this classifier could be further confirmed as molecu-
larly distinct by laser microdissection followed with
separate molecular characterization of subclones.

While survival differences between HET and LumA or
Basal were not significant, the trend of the HET group hav-
ing intermediate survival is complementary to image- and
expression-based evidence for heterogeneity. One limitation
of the TCGA BC cohort is the higher proportion of pro-
spective samples resulting in relatively short follow-up
times, which reduces the number of events available to
power the Kaplan-Meier analysis. Nonetheless, the inter-
mediate survival of the HET group supports the merit of
further studies on the effects of tumor heterogeneity as
revealed by the WSI-based method here on survival.

Conclusions

The ability of the WSI-based IMS classifier to identify
heterogeneity in cancer cell populations from diagnostic
H&E images has significant prognostic implications.
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Furthermore, the classifier described herein provides more
subtyping information than receptor status alone as deter-
mined by IHC or ISH. With continued development of the
system to increase accuracy, given the availability of WSIs
and cost-effectiveness of the methodology, its applica-
tion to standard prognostic procedures may be
accelerated.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513058-020-1248-3.

Additional file 1: Figure S1. Identifying low-confidence PAMS50 labels.
PCA-plot showing clustering of patient samples using PAM50 genes. Sub-
type centroids are marked in dark circles, with lines to each patient
assigned to those subtypes. Euclidean distance in this space was used to
identify 104 patients that cluster significantly closer to a non-assigned
centroid. Figure S2. Exemplary cancer-enriched multiscale patches. A
total of 238,728 multiscale patches were clustered into 24 groups by k-
means clustering and 336 representatives were selected for pathologist
interpretation. Shown here are multiple zoom levels for the patches from
the five most cancer-rich cluster centroids, as defined by pathologist in-
spection. Below each example patch are the group proportions and the
percentage of patches containing cancer tissue. Figure S3. WSI-based
IMS vs. RNA-seg-based PAM50 using test data only for unselected and
low-confidence samples. WSI-based IMS vs. RNA-seg-based molecular
PAM50 on test patients in Table 2 (unselected & low-confidence). a
Kaplan-Meier curves for Luminal A and Basal-like based on molecular
PAM50 calls with HR =1.27 and log-rank tests P=0.60. b Kaplan-Meier
curves for Luminal A and Basal-like based on WSI IMS calls with HR = 1.66
and log-rank tests P=0.11. In ¢, all the cases analyzed were molecularly
classified as LumA, but the WSI-based system classified some of these as
Basal (yellow); the expression levels of ESR1 and PGR for cases WSI-
subtyped as either Basal or LumA (blue) are shown. d Similarly, the recep-
tor levels of molecularly-subtyped Basal cases WSI-subtyped to be LumA
or Basal are shown. Figure S4. Youden analysis for optimal patient-level
classification thresholds. Youden analysis was used to define the mini-
mum percentage of patches that were subtyped as Basal (left) and Lu-
minal A (right) to maximize agreement with RNA-seg-based classifications
of Basal and Luminal A respectively. Shown here are TPR vs. FPR plots at
various thresholds for the minimum percentage of patches subtyped as
Basal (left) and Luminal A (right). The Youden index (i.e. the threshold
value most distant from the x =y line) maximizes the TPR:FPR ratio. Table
S1. Performance of PCA transformations. Variance captured at all three
zoom-levels when increasing the number of dimensions in 256 principle
component increments, starting at 256. Note that at 768 components,
over 95% of variance is captured in all three zoom-levels. Euclidean dis-
tances between the original 2048-space vectors and PCA-estimated ones
were computed and are reported here as an additional performance
error metric. Table S2. Breast cancer k-means clusters. Descriptive statis-
tics for 14 of the 24 different clusters identified in multiscale patch repre-
sentations that were analyzed by a pathologist. The ten clusters not
shown were excluded from further analysis due to having very little cellu-
lar content. A pathologist provided a binary label (cancer or non-cancer)
for a total of 336 patches (24 randomly selected examples from each of
the 14 clusters). Shown here is the number of patches in identified within
each of these clusters, their relative representation of the total number of
samples in this study (238,728), the average distance of any given patch
to the cluster centroid (as a measure of scatter), and the percentage of
patches inspected by a pathologist that contained cancer. Table S3.
Basal vs. non-Basal patch-level train performance. Table S4. Balanced
Basal vs. non-Basal classifier, patch-level train performance. Table S5.
Basal vs. non-Basal classifier WSI-level performance on validation set.
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