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Abstract

Background: Breast cancer cell lines are frequently used as model systems to study the cellular properties and
biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell
lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more
informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from
a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell
line was generated.

Methods: We determined key protein expression data using immunoblot analyses. In addition, two analyses
on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these
cells. These analyses were performed using a commercial PathScan array and a novel and more extensive
phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways.
Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and
summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins
and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft
models of breast cancer.

Results: The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth
factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic
breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the
selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key
signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined.
This provided further clarity for which cell lines were particularly deregulated in common or unique ways.

Conclusions: These two new kinase or “Kin-OMIC” analyses add another dimension of important data about these
frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use
for breast cancer studies and provide context for the interpretation of the emerging results.

Keywords: Breast cancer cell lines, Signaling pathway activation, Tumorigenic, Metastatic, Mutations, Protein expression

* Correspondence: deborah.anderson@saskcancer.ca
†Equal contributors
1Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK
S7N 5E5, Canada
3Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road,
Saskatoon, SK S7N 5E5, Canada
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Smith et al. Breast Cancer Research  (2017) 19:65 
DOI 10.1186/s13058-017-0855-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-017-0855-0&domain=pdf
http://orcid.org/0000-0002-1387-2540
mailto:deborah.anderson@saskcancer.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The general subtyping of breast cancer in the clinic is
based on the expression of three main types of receptor:
estrogen receptor (ER), progesterone receptor (PR) and
the human epidermal growth factor receptor 2 (HER2,
also known as ErbB2). ER+ breast cancers (60% of breast
cancers) express ER ± PR and can be treated with anti-
estrogens, such as tamoxifen, or aromatase inhibitors to
block the generation of estrogen [1]. HER2 breast cancers
(10 − 15% of breast cancers) overexpress HER2 receptors
and can thus benefit from anti-HER2 antibodies, such
as trastusumab, which block cell surface receptor
dimerization with other family members and the activa-
tion of downstream signaling pathways. Triple negative
breast cancers (TNBC; 15–20% of breast cancers) lack ER
and PR, and do not overexpress HER2. As such, TNBC
have no targeted therapies, are currently treated with
chemotherapy, and have the poorest prognosis [1, 2].
Additional gene expression analyses have allowed for a

more refined subgrouping of these subtypes that often
helps to predict treatment responsiveness [3–10]. Lu-
minal A cancers (ER+, PR±, HER2-) typically have a low
proliferative capacity (low Ki67, a proliferative marker)
and are often responsive to both endocrine and chemo-
therapy treatments [10]. Luminal B cancers (ER+, PR±,
HER2+) have high Ki67 expression and usually respond
to both endocrine and trastusumab treatments, with
variable responses to chemotherapy [10]. HER2-amplified
breast cancers (ER-, PR-, HER2+) overexpress high levels
of HER2, have high Ki67 expression, and are responsive to
trastusumb therapy and chemotherapy [10]. Basal A, also
called “basal” cancers (ER-, PR-, HER2-) have high Ki67
expression, typically express epidermal growth factor re-
ceptor (EGFR+) and/or cytokeratin 5/6, and frequently re-
spond to chemotherapy [10]. Basal B or claudin-low
cancers are also ER-, PR-, HER2-, have low Ki67, E-
cadherin, and claudin-3/4/7 expression, and have an inter-
mediate response to chemotherapy [10].
There are numerous additional genes with variable ex-

pression levels and/or mutations within breast cancer
cells, which contribute to a diverse genetic background
that could influence therapeutic responses. As such, it is
important to appropriately select breast cancer cell lines
that accurately reflect this diversity when carrying out
breast cancer studies. Further, if the molecular charac-
teristics of the breast cancer cell lines are known, their
ability to influence the results of experiments can be
more effectively considered.
In this report, information was compiled from a var-

iety of sources about a large panel of breast cancer cell
lines that included the mutational status and mRNA
expression of many important genes, and the tumorigen-
icity and metastatic properties in mouse xenograft
models. Protein expression levels were examined for the

corresponding gene products and we noted that these
did not always correspond to the mRNA levels. In
addition, lysates from serum-starved cells were used to
carry out two types of pathway activation analyses to as-
sess the activation of various signaling pathways within
each cell line.

Methods
Cell culture
A panel containing 40 breast cancer cell lines and 4
non-tumorigenic breast cell lines was obtained from the
American Type Culture Collection (ATCC, Manassas,
Virginia, USA 30-4500 K; [11]). Cells were cultured ac-
cording to ATCC recommendations for fewer than six
months from the time of resuscitation. All cell lines were
authenticated by the supplier.

Immunoblot analysis
Protein expression in the breast cancer cell lines was
quantified by immunoblot analysis as previously de-
scribed [12]. Briefly, SDS-PAGE was performed loading
an equal amount of total protein from cell lysates in
each lane as determined by Lowry assay (Sigma Aldrich,
Oakville, ON, Canada TP0300). Samples were trans-
ferred to nitrocellulose membranes and probed with pri-
mary antibodies. Antibodies were obtained from Santa
Cruz Biotechnology (Dallas, TX, USA) for ER alpha
(sc-8002), PR (sc-538), HER2 (sc-284), phosphatase and
tensin homolog (PTEN) (sc-7974) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (sc-25778), and
from Cell Signaling Technology (Danvers, MA, USA) for
p110α (4249) and p110β (3011). Additional primary anti-
bodies included: EGFR (BD Biosciences, Mississauga,
ON, Canada; 610017), p53 (ProteinTech, Rosemont, IL,
USA; 10442-1-AP) and p85α (Cedarlane, Burlington,
ON, Canada; 05-212). Blots were then probed with infra-
red 680 nm or 800 nm dye-tagged secondary antibodies
(LI-COR Biosciences, Lincoln, NE, USA; 200 ng/ml) and
were imaged with the Odyssey Infrared Imaging System
(LI-COR Biosciences, Lincoln, NE, USA). The four gels
required for each experiment were resolved, transferred,
probed, washed, scanned and processed together to
minimize technical artifacts. Blots shown are representa-
tive of at least three independent experiments, each
using a fresh cell lysate.

Database analyses
The ATCC website (http://www.ATCC.org; accessed
May 14, 2015) provided basic information regarding the
cell lines, including the sources used to generate the
cell line, the type of breast cancer, and in some in-
stances, the molecular classification or subtype, and
partial data on the expression or absence of some
genes. The catalogue of somatic mutations in cancer
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(COSMIC; http://cancer.sanger.ac.uk/cell_lines) database
of cell line mutations was accessed January 30, 2016 (ver-
sion v75). For Additional file 1: Table S3, the list of mu-
tated genes was filtered using the online tools to provide
only the cancer genes considered to be pathogenic. The
cancer cell line encyclopedia (CCLE; https://www.broad
institute.org/software/cprg/?q=node/11; 2012 September
version [13]) dataset containing the robust multi-array
average (RMA) and quantile-normalized mRNA expres-
sion was used. The values for normalized mRNA expres-
sion were then divided into four groups for each gene
product as follows: ER and PR (>9 = +++, 7-8.9 = ++, 5-
6.9 = +, <5 = -); HER2/ErbB2 (>10 = +++, 9-9.9 = ++, 8-8.9
= +, <8 = -); EGFR, TP53, BRCA1, BRCA2, p110α, p110β,
p85α and PTEN (>9 = +++, 8-8.9 = ++, 7-7.9 = +, <7 = -).

PathScan analysis
Cells were cultured under serum-starvation conditions
(0.5% fetal bovine serum (FBS) containing medium) for
24 hours to analyze the signaling proteins/pathways acti-
vated within these cell lines. Cells were lysed and used
to probe a PathScan RTK Signaling Antibody Array (Cell
Signaling Technology, distributed by New England Bio-
labs, Whitby, ON, Canada; 7949) using reagents pro-
vided within the kit and according to the supplier’s
instructions. These slide-based antibody arrays enable
the simultaneous quantification of the extent of phos-
phorylation of 28 receptor tyrosine kinases and 11 key
signaling proteins. The nitrocellulose-coated glass slides
have highly specific capture antibodies that selectively
bind target proteins within the cell lysate. A biotinylated
detection antibody mixture and streptavidin-linked
DyLight 680 molecule allow for the detection of bound
protein using the Odyssey Infrared Imaging System (LI-
COR Biosciences, Lincoln, NE, USA). Quantification
was carried out using Odyssey V3.0 software. The raw
intensity data for each target (mean of duplicate target
measurements on each slide) had the background sub-
tracted (mean of the 2 negative control spots), and was
reported as a percentage of positive control spots (mean
of 10 positive control spots). Data for the targets are
reported for each cell line as the mean ± standard devi-
ation of at least two (but for most three) independent
experiments containing duplicate measurements, each
using a fresh lysate. Hierarchical clustering was per-
formed on both the phosphoproteins and cell lines using
Ward's method (minimize cluster variance) with the Eu-
clidean distance set as the distance metric. The heatmap
and dendograms were generated using the Matplotlib
and SciPy libraries for Python.

Kinome analysis
A customized peptide array was developed to consider
cancer-associated pathways, proteins and phosphorylation

events. Phosphorylation events represented on the array
were selected from databases of experimentally defined
phosphorylation events and from those predicted by the
software program DAPPLE2 [14]. Additional peptide sub-
strates were included to represent proteins, and their asso-
ciated phosphorylation events, that were shown in the
literature to be differentially regulated in a number of can-
cers including renal cell carcinoma, pancreatic cancer, and
prostate cancer [15–17]. Major signaling pathways in-
volved in proliferation, metabolism, and apoptosis were
also included on the array in order to give a general over-
view of the cell signaling patterns. In total, 1290 15-mer
peptides were rationally selected for the array.
Design, construction, and application of the peptide

arrays were based upon a previously reported protocol
with modifications [18, 19]. Briefly, cells were serum-
starved by growing in 0.5% FBS for 24 hours and 10 ×
106 cells were collected, pelleted, and lysed by addition
of 100 μl of lysis buffer (20 mM Tris-HCl, pH 7.5,
150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton
X-100, 2.5 mM sodium pyrophosphate, 1 mM sodium
orthovanadate, 1 mM sodium fluoride, 1 μg/ml leupep-
tin, 1 μg/ml aprotinin, and 1 mM phenylmethylsulfonyl
fluoride) (all from Sigma-Aldrich unless indicated). Cells
were incubated on ice for 10 minutes and spun in a
microcentrifuge for 10 minutes at 4 °C. A 70-μl aliquot
of this supernatant was mixed with 10 μl of activation
mix (50% glycerol, 500 μM ATP (New England BioLabs,
Pickering, ON, Canada), 60 mM MgCl2, 0.05% (v/v) Brij
35, 0.25 mg/ml bovine serum albumin) and incubated
on the array for 2 hours at 37 °C. Arrays were then
washed with phosphate-buffered saline (PBS) + 1% Triton
X-100. Slides were submerged in phosphospecific fluores-
cent ProQ Diamond Phosphoprotein Stain (Invitrogen,
ThermoFisher, Burlington, ON, Canada) with agitation for
1 hour. Arrays were then washed three times in destaining
solution containing 20% acetonitrile (EMD Biosciences,
VWR Distributor, Mississauga, ON, Canada) and 50 mM
sodium acetate at pH 4.0 for 10 minutes. A final wash was
done with distilled deionized water. Arrays were air dried
for 20 minutes and then centrifuged at 300 × g for 2 mi-
nutes to remove any remaining moisture. Arrays were
analyzed using a GenePix Professional 4200A microarray
scanner (MDS Analytical Technologies, Toronto, ON,
Canada) at 532 to 560 nm with a 580-nm filter to detect
dye fluorescence. Images were collected using GenePix
software (version 6.0) and the spot intensity signal was
collected as the mean of pixel intensity using local feature
background intensity calculation with the default scanner
saturation level.
All data processing and analysis was done using the

Platform for Intelligent, Integrated Kinome Analysis
(PIIKA) software [20], which is freely available for non-
commercial use at http://saphire.usask.ca/saphire/piika.
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For each peptide within a given array, the chi-square test
was performed to determine whether the degree of vari-
ability among the technical replicates for that peptide
was greater than would be expected by chance. Any pep-
tide that had a P value according to the chi-square test
of less than 0.01 was considered to be inconsistently
phosphorylated among the technical replicates and was
excluded from further analysis.
The preprocessed data were subjected to hierarchical

clustering and principal component analysis (PCA) to
cluster peptide response profiles across cell lines. For
each of the 1290 peptides in a single sample and cell
line, the average was taken over the nine replicates that
are transformed through variance stabilization and
normalization (VSN). For hierarchical clustering, each
sample/cell line vector was considered a singleton (i.e., a
cluster with a single element) at the initial stage of the
clustering. The two most similar clusters were merged,
and the distances between the newly merged clusters
and the remaining clusters were updated, iteratively. The
method, as described by Eisen et al. [21], used the follow-
ing calculation: average linkage + (1 - Pearson correlation).
The method takes the average over the merged (i.e., the
most correlated) kinome profiles and updates the dis-
tances between the merged clusters and other clusters by
recalculating the correlations between them.
InnateDB is a publicly available resource which, based

on levels of either differential expression or phosphoryl-
ation, predicts biological pathways based on experiment
fold change data sets [22]. Pathways were assigned a
probability value (P) based on the number of proteins
present for a particular pathway and the degree to which
they were differentially expressed or modified relative to
a control condition.
For hierarchical clustering of kinome profiles, the dis-

tance metric used was (1 - Pearson correlation), while
McQuitty linkage was used as the linkage method. Colors
indicate the average (over nine intra-array replicates) nor-
malized phosphorylation intensity of each target, with red
indicating increased phosphorylation and green indicating
decreased phosphorylation. The intensity of the color cor-
responds to the degree of increase or decrease [23].

Results and discussion
Molecular features and tumorigenicity of breast cancer
cell lines
We have compiled the currently available data and carried
out further analyses to better classify and characterize a
panel of 40 breast cancer cell lines compared to 4 non-
tumorigenic control breast cell lines. Several studies using
large groups of breast cancer cell lines have evaluated
gene expression data to molecularly classify each cell line
from general subtypes of normal, ER+, HER2-amplified,
and TNBC and into further subgroups of luminal A,

luminal B, HER2-amplified, basal A, and basal B (also
known as claudin-low) [3, 4, 6, 7]. We have compiled
these data together with those from the ATCC [11], the
commercial source of these cell lines (Additional file 2:
Table S1). In addition, the mutational status of key genes
was obtained from COSMIC [24] and mRNA expression
levels from the CCLE [13]. Furthermore, protein expres-
sion levels for ER, PR, HER2, EGFR, and p53 were deter-
mined within this large group of cell lines using an
immunoblot analysis (Additional file 2: Table S1 and Add-
itional file 3: Figure S1). There have been conflicting re-
ports as to whether the MDA-MB-453 cell line is HER2-
amplified or TNBC/basal A, and by extension, MDA-kb2
that was derived from MDA-MB-453. These inconsisten-
cies likely resulted from the high HER2 mRNA levels,
yet relatively low HER2 protein expression. Based on
the HER2 protein expression observed in the immuno-
blots (Additional file 3: Figure S1), we classified MDA-
MB-453 and MDA-kb2 as TNBC/basal A. Several cell
lines show a similar discrepancy in PR levels with rela-
tively high mRNA expression, yet little or no PR protein,
including HCC1428, MCF7, UACC812, and ZR-75-1.
We also noted that two cell lines had higher levels of
protein expression than would be predicted from the
mRNA levels, including very high ER expression in
HCC1500 cells and some EGFR expression in HCC38
cells. The general disconnect between mRNA and pro-
tein expression has been described in previous reports
[25, 26].
In some cell lines, and in contrast to the wild-type sta-

tus and positive p53 mRNA expression for HCC1428,
MCF7 and ZR-75-30 cells, there was minimal detectable
expression of p53 protein (Additional file 2: Table S1).
There were also several cell lines in which p53 protein
levels were much higher than the corresponding mRNA
levels would predict, including for HCC1937 (WT),
HCC38 (R273L mutation), HCC2157 (R248W), MDA-
MB-231 (R280K), and SK-BR-3 (R175H). The R175H
mutation in p53 is present in both AU565 and also SK-
BR-3 cells with very different levels of p53 protein ex-
pression. This result suggests that protein stability is not
affected by the R175H mutation and instead other
factors are influencing p53 protein expression. Thus,
caution should be exercised when inferring protein
expression based on mRNA levels, since in several in-
stances they do not correspond.
The mutational status and mRNA expression levels for

BRCA1 and BRCA2 were also collected (Additional file 2:
Table S1). Several cell lines with the wild-type BRCA1
gene did not express BRCA1 mRNA, including AU565,
HCC38, HCC2218, Hs578T and MDA-MB-134-VI. For
BRCA2, most of the cell lines contained a wild-type gene,
and yet most lacked detectable levels of BRCA2 mRNA
with the exception of HCC1187 and HCC1937. These
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results are consistent with reports of epigenetic mecha-
nisms that downregulate gene expression in breast cancer,
particularly that of BRCA1 and BRCA2 [27–29].
We further focused on the analysis of key phos-

phatidylinositol 3-kinase (PI3K) pathway genes that
when mutated or differentially expressed would promote
PI3K pathway activation, which is critically important in
tumorigenesis. As described, mutational data were ob-
tained from the COSMIC database, mRNA expression
from the CCLE, and an immunoblot analysis for protein
expression was performed (Additional file 4: Table S2
and Additional file 5: Figure S2). Consistent with previ-
ous observations about breast cancer cells, PI3K path-
way activating events are frequent, particularly the loss
of PTEN expression and the presence of activating

mutations in the PIK3CA gene encoding p110α, usually
at the hot spot sites (E545K, E542K, and H1047R) [9]. In
addition, reductions in p85α expression were fairly com-
mon and the more rare amplification of p110β, specific-
ally at the level of protein expression, was observed.
Each of these alterations has been shown to contribute
to PI3K pathway activation [6, 30–35]. Several cell lines
do not express p110α protein, which could reduce the
net PI3K pathway signaling (Additional file 4: Table S2
and Additional file 5: Figure S2). The majority of the
breast cancer cell lines analyzed showed activating al-
terations in one of these PI3K pathway components,
but there were also several that showed two or more.
Only three cell lines (HCC1187, MDA-MB-134-VI,
and UACC812) showed no alterations in p110α,

Fig. 1 PathScan heatmap illustrating the clustering of breast cancer cell lines and target phosphorylation profiles. Hierarchical clustering was
performed on both phosphoproteins and cell lines as detailed in "Methods". Cell line names have been color-coded as follows: estrogen
receptor-positive (purple), human epidermal growth factor receptor 2 -amplified (red), and triple negative breast cancer (blue). Clusters of cell
lines with similar phosphoprotein profiles have been numbered 1−3, as indicated
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p110β, p85α, and PTEN, consistent with the high fre-
quency of PI3K pathway activation events noted in
breast cancers [9, 32].
To further aid in the selection of breast cancer cell line

models, we also compiled additional cancer mutation data
for each cell line, as determined using COSMIC, and their
tumorigenic and metastatic potential in mouse xenograft
models from various publications [36–61] (Additional file
1: Table S3). These mutational profiles provide additional
insight into molecular alterations that could influence
breast cancer cell behavior that may impact cell line
choice or data interpretation. Our laboratory found this
latter information particularly useful when selecting

appropriate cell lines to study the role of CREB3L1 in
breast cancer metastasis [62, 63].

Characterization of activated receptor and signaling pathways
The analyses of the breast cancer cell lines and subtyping
have focused primarily on the mutational status and ex-
pression (mRNA) of key genes, and to a lesser extent key
proteins. This molecular information is fairly straightfor-
ward to obtain, but it does not provide a more integrated
global readout of which cellular pathways are activated
and to what extent. Therefore, we carried out two analyses
to assess pathway activation within this panel of breast
cancer cell lines.

Fig. 2 Kinome heatmap illustrating the clustering of breast cancer cell lines and target phosphorylation profiles. Hierarchical clustering was
performed on both phosphoproteins and cell lines as detailed in “Methods”. Rows correspond to probes (phosphorylation targets), and columns
correspond to samples. Red indicates increased phosphorylation and green indicates decreased phosphorylation, with the intensity of the color
corresponding to the degree of increase or decrease. Cell line names have been color-coded as follows: estrogen receptor-positive (purple),
human epidermal growth factor receptor 2-amplified (red), and triple negative breast cancer (blue). The cluster that each cell line was grouped
into in "Fig. 1" has been indicated under each cell line name
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a

b

c

Fig. 3 Kinome results of (a) HER/ErbB, (b) vascular endothelial growth factor (VEGF) and (c) insulin signaling pathways. For each cancer cell
line, pathway overrepresentation analysis was performed using InnateDB relative to a control representing the averaged signaling profile of
four non-cancer cell lines (184B5, MCF10A, MCF12A, and MCF10F; noted as normal, B-45). The percentage of peptides with increased or decreased
phosphorylation is calculated relative to the total number of peptides on the array that are associated with the signaling pathway under consider-
ation. Consideration is limited to peptides with consistent patterns of phosphorylation across the nine technical replicates (P < 0.05) and
changes in the extent of phosphorylation are determined as differential phosphorylation (P < 0.05) relative to the control. The pathway over-
representation analysis of InnateDB also provides P values for the activation or repression of the signaling pathway based on both the number
of peptides that are consistently and differentially phosphorylated between the cancer cell line and the control cells and the magnitude of
this phosphorylation difference. Cell lines with activation of the pathway are represented above the vertical axis (blue) or below for those with
repression (red) (*P < 0.10; **P < 0.05). Dashed lines indicate the level of phosphorylation for the four averaged normal cell lines (i.e., B-45) to
help identify differences for the cancer cell lines. HER2amp human epidermal growth factor receptor 2-amplified, ER estrogen receptor, TNBC
triple negative breast cancer
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To determine the key receptors and pathways that
were activated within each of the cell lines as a result of
the protein expression profiles and mutational status,
cells were cultured for 24 hours in low serum (0.5%
FBS) to minimize the impact of growth factor-mediated
receptor and pathway activation. Two complementary
analyses were then carried out. First, lysates were used
to probe a commercially available PathScan RTK Signal-
ing Antibody Array from Cell Signaling Technology.
This analysis provided the activation status of 28 recep-
tor tyrosine kinases and 11 downstream signaling pro-
teins (Additional file 6: Table S4, Additional file 7:
Figure S3 and Additional file 8: Figure S4).
We subsequently carried out a cluster analysis to

identify groups of cell lines in which the activation of
specific kinases gave similar phosphorylation profiles.
We identified three main clusters (Fig. 1). Cluster 1
has the lowest levels of phosphorylation and contains
many of the TNBC cell lines and non-tumorigenic
breast lines, but also an ER+ (HCC1428) and two
HER2-amplified (HCC2218 and BT474) cell lines.
Cluster 2 has intermediate levels of phosphorylation

and contains most of the ER+ cell lines (8/10), about
half of the HER2-amplified lines (7/12), a few TNBC
lines (4/18), and one non-tumorigenic breast line,
MCF10F (Fig. 1). Cluster 3 has the most highly phos-
phorylated tyrosine kinases, including HER2, HER3,
vascular endothelial growth factor receptor 2 (VEGFR2),
c-Kit, Stat1, fibroblast growth factor receptor 3 (FGFR3),
and tyrosine kinase with immunoglobulin-like and
EGF-like domains 2 (Tie2), and includes several HER2-
amplified cell lines (AU565, SK-BR-3, ZR-75-30). Sur-
prisingly, this cluster also contains several TNBC cell
lines (MDA-MB-468, HCC70, MDA-MB-157, MDA-
MB-453), with a phosphorylation profile more similar
to these HER2-amplified lines than the majority of the
TNBC cell lines, and the ER+ cell line (MDA-MB-175-
VII) (Fig. 1). This analysis suggests that these breast
cancer cell lines can be grouped based on the phos-
phorylation profile, as an alternative to the standard
criteria, depending on the studies to be performed. Pro-
tein phosphorylation status is important and could
provide important mechanistic information for studies
using these cell line models.

a

b

Fig. 4 Kinome results for the (a) fibroblast growth factor receptor (FGFR) and (b) ephrin (EphA/B) signaling pathways. The analysis was carried out
as detailed for “Fig. 3”. HER2amp human epidermal growth factor receptor 2-amplified, ER estrogen receptor, TNBC triple negative breast cancer
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A second phosphoprotein activation analysis was car-
ried out using serum-starved lysates to probe a custom-
made cancer-specific peptide array of kinase target pep-
tides, called a kinome array. This allowed for the analysis
of a large number of kinase targets that may be active in
this panel of breast cancer cell lines. The array consisted
of 15-mer peptides (1290 total) corresponding to kinase
substrates within major signaling pathways involved in
key cellular processes, including cell proliferation, me-
tabolism, and apoptosis (Additional file 9: Table S5).
Phosphorylated kinome array peptides were quantified
and reported relative to the mean signal of the corre-
sponding peptide from four non-tumorigenic breast cell
lines (Additional file 10: Table S6).
We carried out a cluster analysis to identify degrees of

similarity in the signaling profiles across cell lines (Fig. 2).
In contrast to the PathScan data in which three distinct
clusters of cell lines were identified based on 39 phos-
phoproteins, the kinome data provided more of a con-
tinuum in which adjacent cell lines were quite similar,
but larger clusters of cell lines were not evident. No
clustering of molecular subtypes of breast cancer was
observed and the clustering noted in the PathScan data

(Fig. 1) was not recapitulated in this more extensive ana-
lysis (Fig. 2). This is likely the result of the large number
of phosphoproteins analyzed (i.e., 1290).
The kinase substrates were also grouped into the

major biological pathways in which they are known to
play a role, realizing that many contribute to the regula-
tion of several pathways (Additional file 11: Table S7).
The number of peptides with increased or decreased
phosphorylation was determined for each cell line rela-
tive to the mean of the control non-tumorigenic breast
cell lines. Several pathways showed large differences be-
tween the breast cancer cell lines and the control breast
cells and have been graphed to illustrate the fraction of
the target peptides with upregulated phosphorylation
and downregulated phosphorylation within the same
pathway (Figs. 3, 4 and 5). This analysis takes into account
each component in the pathway to determine the overall
phosphorylation status of the pathway. The statistical ana-
lysis factors in the fold change in the phosphorylation of
each target (Additional file 10: Table S6), for the determin-
ation of P values.
The HER/ErbB signaling pathway was found to be sig-

nificantly activated in the ER+ cell line ZR-75-1, and in

a

b

Fig. 5 Kinome results for the (a) PI3K/Akt and (b) Jak/STAT signaling pathways. The analysis was carried out as detailed for “Fig. 3” HER2amp
human epidermal growth factor receptor 2-amplified, ER estrogen receptor, TNBC triple negative breast cancer
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the HER2-amplified cell line ZR-75-30 (Fig. 3a). VEGF
signaling had reduced activity in BT549 cells (Fig. 3b).
Insulin signaling had reduced activity in MDA-MB-231
cells, but enhanced activity in HCC1937 cells (Fig. 3c).
FGFR signaling was increased in HCC38 cells (Fig. 4a),
whereas EphA/B signaling was decreased in HCC2218
cells and increased in MDA-MB-436 cells (Fig. 4b).
PI3K/Akt signaling was enhanced in HCC1187 cells
(Fig. 5a) and Jak/STAT signaling was activated in HCC202
cells (Fig. 5b). This analysis highlights the most prominent
pathways that are altered within the cell lines.
More specific changes in the phosphorylation of indi-

vidual targets can be mined from the complete dataset
(Additional file 10: Table S6). There were some targets that
were frequently substantially more phosphorylated or less
phosphorylated across most cell lines regardless of the sub-
type of breast cancer. For example, one target that showed
a general increase in phosphorylation in most cell lines was
PPP1R12A (on S445) (Additional file 10: Table S6, row
936). When PPP1R12A is phosphorylated on S445 (by
LATS) it dephosphorylates T210 of PLK1 in an attempt to
inactivate this frequently overexpressed kinase involved in
cell cycle progression [64, 65]. A second target with in-
creased phosphorylation across most cell lines was STAT3
(on Y705) (Additional file 10: Table S6, row 1108). Phos-
phorylation of STAT on this site is important for cell mi-
gration, invasion and anchorage-independent growth [66].
In contrast, some targets such as IKKα (on T23)

showed a decrease in phosphorylation in many cell lines
(Additional file 10: Table S6, row 559). Akt phosphory-
lates T23 of IKKα to activate NF-κB and promote cell
survival [67]. A second target with decreased phosphoryl-
ation in many cell lines was CDK1 (on T14) (Additional
file 10: Table S6, row 270). Dephosphorylation of T14
releases its inhibition to activate CDK1 and promote
cell cycle progression [68].
Several cell lines displayed a larger number of phos-

phorylated targets with substantial changes (Additional
file 10: Table S6). These included: several ER+ (MCF7,
HCC1428, and MDA-MB-175-VII), HER2-amplified
(HCC202, HCC1419, and MDA-MB-231) and TNBC
(HCC1395 and HCC38) cell lines. The data on these ac-
tivated or inactivated signaling targets will be a valuable
resource in the selection of cell lines and interpretation
of data for breast cancer cell line studies.

Conclusions
In this report a resource has been created that includes
key cancer mutations, mRNA expression, and protein
expression data for a large panel of 40 breast cancer cell
lines, as compared to 4 non-tumorigenic control breast
cell lines. The tumorigenic and metastatic properties in
mouse xenograft models have also been compiled to aid
in the selection of breast cancer models to study these

processes. Important new information about the cellular
proteins and pathways active within these cell lines has
also been evaluated to facilitate both the choice of the
best cell lines for a particular study, as well as to aid in
the interpretation of experimental observations by pro-
viding a context for the discussion of the results ob-
tained. This will be a valuable resource for the breast
cancer research community.
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Additional file 1: Table S3. Mutations in the breast cancer cell lines plus
their tumorigenic and metastatic ability in mouse xenografts. (XLSX 13 kb)

Additional file 2: Table S1. Basic expression profile and molecular
classification of a panel of breast cancer cell lines. (XLSX 19 kb)

Additional file 3: Figure S1. Protein expression analysis to aid in the
molecular classification of breast cancer cell lines. Cell lysates containing
equivalent amounts of total cell protein from the indicated non-
tumorigenic breast (184B5, MCF10A, MCF10F, MCF12A) and breast
cancer cell lines were probed with the indicated antibodies and GAPDH
(loading control). The amount of total protein loaded per lane for each
set of blots was as follows: ER (50 μg), PR (50 μg; PR-A is 81 kDa and
PR-B is 116 kDa), HER2 (10 μg), EGFR (50 μg), p53 (50 μg), and GAPDH
(50 μg). The molecular weight of each protein is indicated. (PDF 259 kb)

Additional file 4: Table S2. Mutations, mRNA and protein expression
for PI3K pathway components in breast cancer cell lines. (XLSX 15 kb)

Additional file 5: Figure S2. PI3K pathway protein expression analysis
for breast cancer cell lines. Cell lysates containing equivalent amounts
of total cell protein from the indicated non-tumorigenic breast (184B5,
MCF10A, MCF10F, MCF12A) and breast cancer cell lines were probed with
the indicated antibodies and GAPDH (loading control). The amount of
total protein loaded per lane for each set of blots was as follows: p110α
(50 μg), p110β (50 μg), p85α (25 μg), PTEN (50 μg), and GAPDH (50 μg).
The molecular weight of each protein is indicated. (PDF 234 kb)

Additional file 6: Table S4. Pathscan analysis of receptors and pathways
intrinsically activated in a panel of breast cancer cell lines. (XLSX 67 kb)

Additional file 7: Figure S3. Downstream signaling pathway activation
in breast cancer cell lines. Lysates from the indicated breast cancer cell
lines that had been grown under serum-starved conditions were used
to probe a PathScan array to detect intrinsic activation of the indicated
proteins using pan-pTyr, or the specified phosphospecific antibody. The
schematic image of the array was reproduced courtesy of Cell
Signaling Technology, Inc. (www.cellsignal.com). (PDF 390 kb)

Additional file 8: Figure S4. Downstream signaling pathway activation
in additional breast cancer cell lines. Lysates from the indicated breast
cancer cell lines that had been grown under serum-starved conditions
were used to probe a PathScan array to detect activation of the indicated
proteins using pan-pTyr, or the specified phosphospecific antibody. The
schematic image of the array was reproduced courtesy of Cell Signaling
Technology, Inc. (www.cellsignal.com). (PDF 398 kb)

Additional file 9: Table S5. Kinome peptide list. List of protein
substrates from which peptides were derived, the 15-mer peptide
sequence, and the specific amino acid(s) with phosphorylation that
was detected if phosphorylated by a kinase from the cell lysate. The
amino acid phosphorylation site numbering is for the human protein
although some of the phosphorylations were originally identified at
the equivalent sites in other species. (XLSX 106 kb)

Additional file 10: Table S6. Complete kinome data for all peptide
substrates and all breast cell lines evaluated. Fold change is given for the
phosphorylation of each peptide substrate, relative to the mean of four
non-tumorigenic breast cell lines (184B5, MCF10A, MCF10F, MCF12A). Site
refers to the amino acid residue in the human protein. (XLSX 443 kb)

Additional file 11: Table S7. Kinome peptides in array, grouped according
to the major biological pathways to which they contribute. (XLSX 38 kb)
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