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Abstract

Introduction Docetaxel is one of the most effective
chemotherapeutic agents in the treatment of breast cancer.
Breast cancers can have an inherent or acquired resistance to
docetaxel but the causes of this resistance remain unclear.
However, apoptosis and cell cycle regulation are key
mechanisms by which most chemotherapeutic agents exert their
cytotoxic effects.

Methods We created two docetaxel-resistant human breast
cancer cell lines (MCF-7 and MDA-MB-231) and performed
cDNA microarray analysis to identify candidate genes
associated with docetaxel resistance. Gene expression
changes were validated at the RNA and protein levels by reverse
transcription PCR and western analysis, respectively.
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Results Gene expression cDNA microarray analysis
demonstrated reduced p27 expression in docetaxel-resistant
breast cancer cells. Although p27 mRNA expression was found
to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-
fold), reduced expression of p27 protein was noted in both
MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer
cells (2.83-fold and 3.80-fold, respectively).

Conclusions This study demonstrates that reduced expression
of p27 is associated with acquired resistance to docetaxel in
breast cancer cells. An understanding of the genes that are
involved in resistance to chemotherapy may allow further
development in modulating drug resistance, and may permit
selection of those patients who are most likely to benefit from
such therapies.

Introduction

Recent developments in chemotherapy have focused on
the taxanes docetaxel and paclitaxel. Docetaxel is used in
the treatment of breast cancer and is being evaluated in
other solid tumours, including lung, gastro-oesophageal
and, more recently, prostate cancers [1-3]. It is currently
the most effective agent in the treatment of patients with
advanced breast cancer. Up to 50% of patients who have
previously been treated with or without anthracycline
drugs, and have developed disease recurrence, will exhibit
an objective response to docetaxel therapy [4]. Unfortu-
nately, however, many patients do not respond to docetaxel
or, having had an initial response, develop disease progres-
sion. This may occur either due to an inherent or an
acquired resistance to docetaxel.

The mechanisms of docetaxel activity include binding to the
B-tubulin subunits of microtubules, which prevents their
depolymerization and thus blocks cell growth in the G,—M
phase. This consequently results in cell death by phospho-
rylation of bcl-2 [5], which is integral to the apoptotic path-
way. However, the mechanisms of docetaxel resistance are
poorly understood, although there are some that have been
identified as probably being involved in resistance. For
example, mutations in the B-tubulin gene [6] and differential
expression of B-tubulin isotypes have been associated with
resistance to docetaxel and paclitaxel in breast, ovarian and
lung cancers [7-9]. Furthermore, in lung and prostate can-
cers docetaxel has been shown to induce expression of the
p27 protein, which is another key protein involved in apop-
tosis [5,10].

bp = base pairs; MTT = 3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; PCR = polymerase chain reaction; TBST = Tris-buffered saline

with 0.1% (vol:vol) Tween 20.
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The p27Kir1 gene is a member of the cyclin-dependent
kinase inhibitors, which arrest progression of the cell cycle
[11]. The p27 protein interacts with cdk2 and cyclin E to
prevent subsequent entry into S phase of the cell cycle [12-
14]. It also acts as a tumour suppressor gene and has been
shown to be involved in cell adhesion, apoptosis and trig-
gering of differentiation [13,15-17]. Unlike many other
tumour suppressor genes, however, gene mutation and
loss of heterozygosity is infrequent, although p27 levels
may be controlled by DNA methylation [18] and protein
degradation through the ubiquitin pathway [19].

The clinical significance of this protein is supported by the
fact that loss of p27 expression has been shown to be a
strong predictor of reduced survival in patients with breast
cancer and also correlates with increasing histological
grade. Furthermore, loss of p27 is involved in tumour resist-
ance to hormonal treatment [20-23]. In experimental animal
models, mice that lack p27 protein expression are larger
than wild-type mice and develop large organs and pituitary
tumours, most probably resulting from uncontrolled cell
proliferation [24-26]. Overexpression of p27, by recom-
binant adenovirus, can also induce spontaneous apoptosis
and cell cycle arrest in breast and oral carcinomas in vitro
[27,28]. Other studies suggest that p27 expression can
have an antiapoptotic effect and prevent drug-induced
apoptosis by DNA damaging agents, such as cisplatin,
leading to drug resistance [29]. The effect of p27, there-
fore, may be cell or tissue specific [14,30]. The ability of
p27 to initiate apoptosis may account for its possible
involvement in chemotherapy-induced apoptosis [31].

Whether modulation of p27 expression plays a role in the
development of resistance to docetaxel in breast cancer
cells has not previously been investigated. This study
focuses on the role played by p27 in docetaxel resistance,
at RNA and protein levels, in an in vitro breast cancer
model of acquired docetaxel resistance. In addition, our use
of cDNA microarrays allowed identification of other candi-
date genes, which may be important for subsequent evalu-
ation of docetaxel resistance.

Methods

Cell culture

Human breast cancer cell lines MCF-7 (oestrogen receptor
positive) and MDA-MB-231 (oestrogen receptor negative)
were cultured in RPMI-1640 medium, supplemented with
10% (vol:vol) foetal calf serum, 0.2% (weight:vol) sodium
bicarbonate and 1% (vol:vol) penicillin-streptomycin, at
37°C in a humidified atmosphere containing 5% carbon
dioxide. The cells were made resistant to docetaxel by
short-term in vitro exposure to docetaxel (a gift from Aventis
Pharma Ltd, West Malling, Kent, UK) for 1 hour, which was
immediately followed by washing of the cells several times
with culture media, trypsinization, and splitting the cells for

subsequent cell growth recovery. The cells were initially
exposed to 10 nmol/l docetaxel increasing to 500 nmol/|
for 1 hour. After this point, the cells were exposed to 1
pmol/l docetaxel increasing to 30 umol/l docetaxel for 24
hours.

Cytotoxic assay

Docetaxel resistance was demonstrated in cell lines by
means of the 8-(4-5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) dye reduction assay [32]. The
MCF-7 and MDA-MB-231 cells and their resistant sublines
were plated onto 96-well plates, with a seeding density of
5 x 104 cells/well in 100 pl RPMI-1640 culture medium.
Cells were exposed to varying concentrations of docetaxel
and incubated at 37°C in a humidified atmosphere contain-
ing 5% carbon dioxide for 24 hours. Following exposure of
cells to docetaxel, cells were treated with 50 pl 12 mmol/|
MTT dye and incubated at 37°C for 4 hours. Following this
incubation period, all the liquid was aspirated from each
well before the addition of 200 pl dimethylsulphoxide in
order to dissolve the MTT—formazan crystals. The number
of viable cells was determined by measuring the absorb-
ance at 570 nm and 630 nm for each well using a micro-
plate spectrophotometer (DynaTech MR5000, DynaTech
Laboratories Inc., Chantilly, VA, USA). All experiments were
repeated three times with six replicates per experiment.

The concentration of docetaxel required to cause 50% inhi-
bition of cell growth was calculated by direct cell counts in
the presence of docetaxel. MCF-7 and MDA-MB-231 cells
and their resistant sublines were plated onto petri dishes in
RPMI-1640 culture medium. Cells were incubated at 37°C
in a humidified atmosphere containing 5% carbon dioxide
for 24 hours. After this time, the medium was removed and
replaced with fresh culture medium containing varying con-
centrations of docetaxel and incubated for a further 24
hours. The medium was then removed and the cells resus-
pended in 1 ml culture medium. In order to count the cells,
100 pl of the cell solution was added to 100 pl trypan blue,
and the cells were counted using a haemocytometer by
light microscopy. The relative survival was expressed as a
percentage inhibition of growth relative to the control. All
experiments were repeated two times with two replicates
per experiment.

cDNA microarray analysis

Total RNA was isolated from the cell lines using Trizol rea-
gent (Invitrogen, Paisley, UK) in accordance with the man-
ufacturer's instructions. RNA quality was enhanced using
the RNeasy Mini Kit (Qiagen, Crawley, West Sussex, UK),
and the integrity of RNA was checked by separating RNA
by electrophoresis through a 1% (weight:vol) agarose gel.
Following electrophoresis, the presence of two distinct
bands (representing the 28S and 18S species of rRNA),
with no or minimal smearing, confirmed the presence of



undegraded RNA. In addition, the purity of RNA was deter-
mined by measuring the absorbance at 260 nm and 280
nm using spectrophotometry. Expression of cancer path-
way genes was evaluated using Cancer Pathway Finder
gene expression arrays (Super Array Inc., Frederick, MA,
USA), in accordance with the manufacturer's instructions.
In brief, gene-specific biotin-labelled cDNA probes were
generated from 2.5 pg total RNA using gene-specific prim-
ers for reverse transcription using 200 U MMLV reverse
transcriptase (Promega, Southampton, UK) and 40 U
RNase inhibitor (Promega). The cDNA probe was dena-
tured by heating at 94°C for 5 min and quickly cooled on
ice before hybridization, with the cDNA membrane array, at
68°C overnight. Prior to hybridization, the membrane was
prehybridized at 68°C for 30 min in the supplied hybridiza-
tion buffer (Super Array Inc.). The membrane was washed
accordingly and then the hybridization signals were
detected using the CPD Star chemiluminescent detection
kit (Super Array Inc.). Following this, the membrane was
scanned with a Fluor S phosphorimager (Biorad, Hemel
Hempstead, Hertfordshire, UK) and the scanned image
was converted into digital data and analyzed using GEArray
Analyzer software (Super Array Inc.)

Reverse-transcription polymerase chain reaction

Total RNA (2 pg) was reverse transcribed in 20 pl reverse
transcription reaction buffer (50 mmol/l Tris, pH 8.3, 75
mmol/l potassium chloride, 15 mmol/l magnesium chloride,
10 mmol/I dithiothreitol), containing 250 ng random hexam-
ers (Amersham Pharmacia, Little Chalfont, Buckingham-
shire, UK), 500 pumol/l dNTP and 200 U Superscript |l
reverse transcriptase (Invitrogen). Reverse transcription
was performed at 42°C for 1 hour, followed by heating at
70°C for 10 min. The cDNA (1 ul) was amplified in 25 pl
reaction volumes, which contained the following compo-
nents: 10 mmol/l Tris, pH8.3, 50 mmol/l potassium chlo-
ride, 0.1 mg/ml gelatin, 2.5 mmol/l magnesium chloride,
200 umol/I dNTP, 10 pmol of each oligonucleotide primer,
and 0.5 U Tag DNA polymerase (Roche Diagnostics,
Lewes, East Sussex, UK). PCR was carried out under the
following conditions: 94°C for 2 min followed by 23 cycles
of 94°C for 30 s, 60°C for 30 s, 72°C for 30 s and a final
extension step of 72°C for 10 min. The oligonucleotide
primer sequences for p27 produced a 253 bp PCR prod-
uct: sense primer 5'-TGG AGA AGC ACT GCA GAG AC-
3' and antisense primer 5-GCG TGT CCT CAG AG T
TAG CC-3'. In addition, QuantumRNA™ 18S internal con-
trol standards (Ambion Inc., Huntingdon, UK), which pro-
duced a PCR product of 489 bp, were used at a ratio of
10:1 competitors to primers, in accordance with the manu-
facturer's instructions, to act as an internal loading control
to normalize between samples during densitometry. PCR
products were electrophoresed through a 1.5%
(weight:vol) agarose gel. Gel images were captured by
Genesnap software (Syngene, Cambridge, UK) and band
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densities calculated using a Fluor S phosphoimager (Bio-
rad). The experiments were repeated in triplicate with RNA
isolated from two independent extractions.

Western analysis

Cells were homogenized in a lysis buffer (20 mmol/l Tris,
0.25 mol/l sucrose, 10 mmol/l EGTA, 2 mmol/l EDTA, 1
mmol/l sodium orthovanadate, 25 mmol/l sodium B-glycer-
ophosphate, 50 mmol/l sodium fluoride, pH 7.5). Prior to
use, 0.1% (vol:vol) protease inhibitor cocktail (Sigma, Gill-
ingham, Dorset, UK) was added. Cells were lysed by soni-
cation and aspiration through a 25 G needle. Protein
concentration was quantified using the DC Protein Assay
(Biorad). Ten micrograms of protein was electrophoresed
through a precast 15% polyacrylamide gel (Cambrex Bio-
science, Nottingham, UK) for 2 hours at 25 V. Following
electrophoresis, the separated proteins were transferred to
nitrocellulose membranes (Biorad) and each membrane
was blocked with 5% (weight:vol) skimmed milk in Tris-
buffered saline with 0.1% (vol:vol) Tween 20 (TBST) at 4°C
overnight. Each membrane was incubated with 1:250 dilu-
tion (in 5% [weight:vol] milk/TBST solution) of monoclonal
mouse anti-human p27 antibody (DakoCytomation, Ely,
UK) or 1:5000 B-actin (Abchem, Cambridge, UK) for 1 hour
at room temperature. B-Actin was used as an internal load-
ing control to normalize between samples during densitom-
etry. The membrane was washed six times for 5 min in
TBST solution before addition of the secondary antibody,
HRP labelled goat anti-mouse IgG (Oncogene Research
Products, San Diego, CA, USA), at a 1:5000 dilution in 5%
(weight:vol) milk/TBST solution for 1 hour at room temper-
ature. The membrane was further washed five times for 5
min in TBST solution and then once for 5 min in phosphate-
buffered saline solution. Bands were visualized using
ECL+plus™ chemiluminescent detection kit (Amersham
Pharmacia) in accordance with the manufacturer's instruc-
tions, and the blots were scanned with a Fluor S phos-
phorimager (Biorad). The experiments were repeated in
duplicate with protein isolated from two independent
extractions. Cells were also checked by flow cytometry to
ensure they were in the same cell cycle phase (data not
shown).

Results

Docetaxel-induced cytotoxicity is reduced in docetaxel-

resistant sublines

First, the in vitro effect of docetaxel on cell growth was
determined using a standard cell viability assay. This dem-
onstrated that docetaxel was more cytotoxic in MCF-7 and
MDA-MB-231 cells than in their resistant sublines, which
were able to withstand 24 hours of exposure of 30 umol/I
docetaxel. MCF-7 docetaxel-resistant sublines (MCF-7
TAX30) exhibited a 666-fold greater resistance to
docetaxel than did MCF-7 cells. Furthermore, MDA-MB-
231 docetaxel-resistant sublines (MDA-MB-231 TAX30)
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Table 1

50% Inhibitory concentrations for docetaxel in breast cancer
cell lines

Cell line ICso docetaxel (nmol/l)
MCEF-7 15

MCF-7 TAX30 10000
MDA-MB-231 40
MDA-MB-231 TAX30 55000

MCF-7 TAX30 and MDA-MB-231 TAX30 are docetaxel-resistant
sublines. ICg,, 50% inhibitory concentration.

exhibited a 1375-fold greater resistance to MDA-MB-231
cells (Table 1).

Membrane-based microarray identifies p27 as a
candidate gene associated with docetaxel resistance

In order to identify genes associated with docetaxel resist-
ance, we applied a cDNA expression array to our in vitro
docetaxel-resistant breast cancer model. The human can-
cer pathway array contained 96 genes that are involved in
various pathways of cancer development, including tumour
suppressor genes, oncogenes, signal transduction path-
way genes, growth factors and receptors, and genes
involved in angiogenesis. There was a 2.3-fold downregu-
lation of p27 in MCF-7 docetaxel-resistant cells as com-
pared with the parental cells (Table 2). Because p27 is a
direct target for docetaxel, we selected this as a candidate
for the present study. In addition, there were further
changes in gene expression as illustrated in Table 2.

Expression of p27 mRNA is different in two docetaxel-
resistant breast cancer cell lines

In order to confirm the results obtained using cDNA micro-
arrays, the expression of p27 at the RNA level was deter-
mined by semiquantitative reverse transcription PCR
analysis. In comparison with MCF-7 cells, MCF-7
docetaxel-resistant sublines exhibited a 2.47 * 0.15 fold
decrease in p27 mRNA expression (Fig. 1). In contrast,
p27 mRNA expression was increased in MDA-MB-231
resistant cells (2.29 * 0.76 fold).

Reduction in p27 protein in docetaxel-resistant breast
cancer cells

The conflicting p27 mRNA expression difference between
the two docetaxel-resistant breast cancer cell lines was val-
idated at the protein level by western analysis. It was
observed that p27 protein expression was reduced in both
docetaxel-resistant cell lines (Fig. 2). There was a 2.83 *
0.15 fold decrease in MCF-7 resistant cells and a 3.80-fold
decrease in MDA-MB-231 resistant cells.

Discussion

This study is the first to demonstrate that reduced p27
expression is associated with acquired resistance to
docetaxel in breast cancer cells in vitro. There may be
several mechanisms that are involved in this process and
that may be the result of either transcriptional or transla-
tional regulation, with modulation of gene expression and/
or resultant production of the protein. In addition, there may
be an increased degradation of p27 via the ubiquitin deg-
radation pathway.

Previous studies have indicated that decreased expression
of p27 is associated with drug resistance to hormonal ther-
apy (e.g. tamoxifen) in breast cancer cells and to chemo-
therapy (e.g. cisplatin in malignant gliomas), mediated
through mitogen-activated protein kinase activation
[20,21,38]. It has also been reported that reduced p27
protein expression in epithelial ovarian tumours was
observed, as compared with normal ovaries, from patients
receiving cisplatin and paclitaxel treatment [34]. Reduced
p27 expression was significantly associated with pre-
sumed chemoresistance (i.e. the patients had persistent
disease after treatment) [34]. Furthermore, resistance to
the anti-tumour agent rapamycin (a potent immunosuppres-
sant that was recently reported to be effective in breast
cancer treatment) has also been shown to be associated
with reduced p27 expression in murine myogenic cells
[35]. Another study noted that decreased p27 expression
correlated with chronic Helicobacter pylori infection, which
resulted in a phenotype that was resistant to apoptosis
(and therefore potentially drug resistant because the major-
ity of chemotherapeutic agents induce apoptosis) in gastric
cancer patients [36]. It is possible that decreased p27
expression may prevent apoptosis or arrest cells in G,
phase, thereby reducing the cytotoxic effect of chemother-
apeutic drugs that act on proliferating cells.

Increased p27 expression has also been implicated in
causing drug resistance in leukaemia cell suspensions by
preventing apoptosis [30]. The authors of that study
reported that overexpression of p27 in the cells resulted in
resistance to drug-induced apoptosis, including DNA dam-
aging and non-DNA damaging agents. In addition,
increased p27 expression is associated with cisplatin
resistance in colorectal cancer cells [29]. Naumann and
colleagues [33] also reported that increased p27 expres-
sion could increase resistance to vincristine, camptothecin
and teniposide in malignant glioma cells, whereas reducing
p27 expression (by antisense mRNA) sensitized the same
cells to cisplatin, although effects appeared to be drug
specific. Therefore, it may be that the effects of an individ-
ual antitumour agent are dependent on the mechanisms of
action involved.
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Table 2

Gene expression differences in docetaxel-resistant breast cancer cells

Gene name Gene symbol Chromosome UniGene Gene expression’
HER2 Erbb2 17911.2-q12 Hs. 446352 +11.4
IL-8 L8 4q13-q21 Hs. 624 +8.2
FGF2 FGF2 4q26-q27 Hs. 284244 +6.2
Survivin BIRCS5 17925 Hs. 1578 +3.7
p38 MAPK MAPK14 6p21.2-p21.31 Hs. 79107 +3.56
TNFR1 TNFRSF1A 12p13.2 Hs. 159 -7.5
Bax BAX 19913.3-q13.4 Hs. 159428 -5.1
Cyclin E1 CCNE1 19912 Hs. 244723 -2.8
Killer/DR5/TRAILR2 TNFRSF10B 8p21-p22 Hs. 51233 -2.76
p27Kip1 CDKN1B 12p12-p13.1 Hs. 238990 2.3

TRatio of gene expression between resistant sublines and parental cell lines: '+' indicates an increase in gene expression in the resistant sublines,

and -' indicates a decrease in gene expression in the resistant sublines.

It has generally been regarded that increased p27 can ini-
tiate apoptosis by increasing the expression of the proap-
optotic protein bax [31]. Docetaxel-induced cytotoxicity is
mediated by increased p27 expression in lung and prostate
cancers [10]. Furthermore, if the expression of p27 is
increased, by using the proteosome inhibitor PS-341
(which inhibits the activity of the proteosome enzyme) [37],
then this increases docetaxel-induced apoptosis in lung
cancer cells [38]. Reduced p27 levels, therefore, may pre-
vent cell death occurring by this mechanism. Indeed, p27
was demonstrated to induce apoptosis in response to low
doses of docetaxel independent of bcl-2 phosphorylation,
which is a recognized event for apoptosis regulation by
docetaxel [5].

The precise mechanism by which decreased p27 expres-
sion may lead to docetaxel resistance is not yet fully under-

Figure 1

stood. The p27 protein is primarily involved in cell cycle
arrest (G,) via its ability to bind with and inactivate cyclin E-
cdk2 complexes [39]. It is likely, therefore, that reduced
p27 expression will prevent cell cycle arrest. In addition,
downregulation of p27, with antisense molecules, leads to
re-entry into the cell cycle, which leads to cell proliferation
[40]. It has also been suggested that a loss of p27 may
desensitize tumour cells to antimitogenic signals, thus pre-
venting apoptosis in their evolution [41]. Continued
exposure to docetaxel may therefore select for apoptosis-
resistant tumour cells that express decreased levels of p27.
One recent study demonstrated that a decrease in p27
expression in normal mammary tissue during pregnancy
results in both an increase in cell proliferation and in apop-
tosis, suggesting that under normal circumstances a
reduced expression of p27 would not result in a significant
growth advantage [42]. If the apoptotic pathway is
impaired, however, then cells could proliferate after expo-
sure to docetaxel, and this may contribute to drug
resistance.

Figure 2
188 1 2 3 4
kDa
P 1 mm——————————— |2
! - .
27 ‘ RN cape—— p27
Modulation of p27 mRNA expression in docetaxel-resistant breast can- i

cer cells. Total RNA extracted from each cell line was amplified using
specific oligonucleotide primer sequences and separated by agarose
gel electrophoresis. The p27 and 18S internal control amplified PCR
products produced fragment sizes of 253 bp and 489 bp, respectively.
Lane 1, DNA size standards; lane 2, MCF-7 docetaxel-resistant subline;
lane 3, MCF-7 breast cancer cells; lane 4, MDA-MB-231 breast cancer
cells; lane 5, MDA-MB-231 docetaxel-resistant subline.

Modulation of p27 protein expression in docetaxel-resistant breast can-
cer cells. Protein extracted from each cell line was separated by PAGE,
transferred to nitrocellulose membranes and probed with anti-human
p27 and B-actin antibodies. Lane 1, MCF-7 breast cancer cells; lane 2,
MCEF-7 docetaxel-resistant subline; lane 3, MDA-MB-231 breast cancer
cells; lane 4, MDA-MB-231 docetaxel-resistant subline.
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In addition to p27, cDNA microarray analysis revealed sev-
eral other genes with expression that may be altered in
docetaxel-resistant breast cancer cell lines (Table 2). These
include decreased expression of cell cycle (CCNE7 and
CDKN1B) and proapoptotic genes (BAX and
TNFRSF1A), and increased expression of antiapoptotic
genes (BIRCS5), which could lead to resistance to the
mechanisms of action of docetaxel. Increased expression
of angiogenic (/L8) and growth factors (Erbb2) could also
lead to a more aggressive cell type that is perhaps able to
escape the cytotoxic effects of the drug. These changes,
however, remain to be validated at the mRNA and protein
levels.

One of the limitations of the present study is the use of an
in vitro model of drug resistance, which is, by definition, an
artificial environment. In particular, our experimental
approach selected cells with an acquired resistance to
docetaxel rather than utilizing cells that exhibit de novo
resistance to the drug. We acknowledge that it is possible
that different mechanisms may be involved in de novo
docetaxel resistance. However, a previous study success-
fully used colon cancer cell lines and their resistant sub-
lines to identify a candidate gene, thymidylate synthase,
that is involved in resistance to thymidylate synthase inhib-
itors [43].

Conclusion

The results from this study used cDNA microarrays based
on specific molecular pathways that are believed to be
involved in tumour progression and drug resistance. There
are other, more comprehensive cDNA microarray methods
available, which produce copious amounts of data. How-
ever, our experimental approach provides a quicker, less
complicated and more focused way to identify possible
candidate genes. To the best of our knowledge, this is the
first description of an in vitro model of acquired docetaxel
resistance in breast cancer cells. We directly compared
breast cancer cells with their docetaxel-resistant sublines
to identify gene expression changes associated with
docetaxel resistance. In particular, the fact that p27 protein
expression is reduced in both docetaxel-resistant sublines
suggests that it plays a role in docetaxel resistance in
breast cancer. Further studies, involving genetic profiling,
may be important in allowing identification of those patients
who are most likely to respond to a particular treatment.
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