
Introduction

Metastasis is the most poorly understood aspect of breast 

cancer, a disease that causes roughly half a million deaths 

each year worldwide and is the most common malig-

nancy in women in the United States [1]. Th e fi eld of 

metastasis research is at least a century old [2], and 

classical views hold that the metastatic phenotype is 

possessed by clonal variants within a tumor that happen 

to acquire the requisite mutations [1,3]. Progress in meta-

stasis research, however, has stagnated because of a lack 

of eff ective tools to comprehensively understand the 

complex network of signaling pathways that drives the 

multistep process of the metastatic cascade [4,5]. Th e 

advent of genomic profi ling technology has led to 

paradigm-shifting advances in the conceptual and 

mechanistic understanding of the metastatic process 

over the past decade. Th e early waves of clinical micro-

array studies found that gene expression profi les in 

primary tumors could discriminate breast cancer patients 

with good prognosis from those with poor prognosis [6]. 

Th ese works suggested that metastatic propensity may be 

selected for in the entire tumor and can be accurately 

assessed using bioinformatic approaches. Th us, an 

ensuing debate centered on whether there are any 

metastasis-specifi c genes, and, if so, how they could be 

identifi ed [7,8]. Genomic profi ling of clinical tumor 

samples alone, however, is fundamentally limited in 

provid ing functional insights, as it off ers no method for 

testing hypotheses mechanistically. Th ough prognos-

tically eff ective, such studies on their own have been 

unable to provide a satisfactory, functional understanding 

of the genetic and epigenetic underpinnings of metastatic 

progression.

In contrast, advances in animal models of metastasis 

have been applied to directly test the hypotheses 

generated by classical as well as modern genomic 

approaches to studying disease progression. Such studies 

have utilized the ability to create or isolate variants of 

breast cancer cell lines and quantitatively monitor their 

metastatic abilities in mice using various models of meta-

static progression. Th ese studies have provided critical 

insights into the mechanistic basis of metastatic progres-

sion and have suggested updated conceptual frameworks 

that have helped reconcile the diff erences between prior 

models of metastasis [4,9]. Considered alone, however, 

animal models of breast cancer progression will always 

have questionable applicability to human disease.

Th e combination of advances in bioinformatics 

approaches, animal model technology, and clinical 

dataset assembly has laid the groundwork for integrated 

studies to rapidly expand our knowledge of the breast 

cancer metastasis genetic program. While a mature 

understanding of this program has not yet been 

cemented, insights into the roles and functionality of 

metastasis-specifi c genes and pathways have recently 

emerged. Many studies have used powerful methodolo-

gies to defi ne a gene expression program - such as a 

signal transduction pathway or physiological response 

program - and test its ability to signifi cantly aff ect 

metastatic progression in the experimental setting, as 

well as test whether it shows elevated activity in large, 
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clinical datasets and can thus be used for eff ective prog-

nostication. In this review, our aim is not to exhaustively 

cover the understanding of any one such gene expression 

program in disease progression. Rather, we will instead 

focus our discussion on exemplary integrative studies 

that use functional genomics approaches to study the 

roles of various classical and novel signaling pathways in 

breast cancer metastasis.

Breast cancer subtypes - early portraits

Breast cancer has long been recognized as a hetero gene-

ous disease that can be classifi ed using a variety of 

characteristics and markers, such as histological grade, 

estrogen receptor, progesterone receptor and HER2/

ERBB2 status, and p53 mutational status. Around the 

turn of the century, nascent cDNA microarray technology 

made possible the fi rst investigations into genome-wide 

expression patterns observed in breast cancer patients. 

Th e fi rst wave of such breast cancer profi ling studies per-

formed microarray analyses on primary breast cancer 

tumor samples from small to medium sized patient 

cohorts [10-13]. In these works, unsupervised hierar-

chical clustering methodology was used to group patients 

according to patterns of gene expression, and the diff er-

entiating clusters of genes were scrutinized for biological 

meaning. In Perou and colleagues’ landmark study [11], 

breast cancer patients were found to cluster into four 

discernable groups that, given immunohistochemical 

analyses and the identities of the diff erentiating genes, 

were annotated as basal-like, luminal-like, ERBB2+, and 

normal breast-like. Th ese classifi cations were later 

validated in an independent cohort and it was further 

shown that the basal-like group patients had signifi cantly 

worse prognoses than patients from other subgroups 

[12]. Notably, it was also observed here and in later work 

[14] that rare cases of matched primary tumors and 

metastatic lesions from the same patient always clustered 

together.

Th ese initial works off ered valuable insights into tumor 

biology and demonstrated that intrinsic gene expression 

patterns could be used in conjunction with histopatho-

logical characteristics for a far more sophisticated tumor 

classifi cation system. However, they off ered little infor-

mation pertinent to the key question of what cohesive 

genetic programs underlie metastatic progression. In 

particular, the fi nding that matched primary and meta-

static tumor samples cluster together could be inter-

preted in two quite diff erent ways. One interpretation is 

that the genetic programs of primary tumors are fully 

maintained in metastatic lesions. An alternative expla na-

tion is that primary and secondary tumors are only more 

similar to one another than to tissue from another 

individual, with signifi cant expression diff erences between 

primary and metastatic tumors still being possible.

Predicting metastasis using expression profi les - 

prognosis signatures

Given the diffi  culty in predicting metastatic progression 

based on histopathological and clinical criteria, most 

breast cancer patients receive adjuvant therapy. However, 

had they been left untreated, most of these patients 

would not have suff ered from metastatic disease, render-

ing the therapy a cause of unnecessary suff ering and 

expense. Recognizing the power of microarray approaches 

to discriminate breast cancer patients into clinically 

informative groups, several studies aimed at using clus-

ter ing approaches to tackle the prognostication problem 

(Table 1). While methodologies varied, conclusions were 

similar: gene expression signatures can very eff ectively 

predict which patients survive and which succumb to 

metastatic disease, ostensibly supporting the view that 

metastatic propensity is selected for early in tumor 

progression.

Th e fi rst prognosis signature study [15] used a 

supervised clustering approach to determine which genes 

could most eff ectively discriminate patients between 

those with good or poor prognosis. Such analysis led to 

the identifi cation of a poor-prognosis signature consist-

ing of 70 genes, many of which coded for proteins in-

volved in processes such as cell cycle progression, 

invasion, and angiogenesis. Ultimately, the signature was 

able to correctly classify more than 80% of the patients as 

having good or poor prognosis, thus achieving a marked 

improvement in prognostication compared to standard 

methodologies. While this study used a relatively modest 

number of patient samples (n = 78), the effi  cacy of the 

prognostic signature was validated in a larger (n = 295), 

partially overlapping set of clinical samples [16].

While this original 70-gene signature has had direct 

clinical impact (commercialized as the MammaPrint, 

made available to patients in the United States in 2007), it 

is by no means the only eff ective prognosis signature. 

Using diff erent patient cohorts, array platforms, and 

statistical methodologies, an alternative 76-gene signa-

ture was also reported [17], which provided comparably 

accurate prognostication to the 70-gene signature. 

However, while the 70- and 76-gene signatures consisted 

of similar classes and functional groups of genes [18], 

they had strikingly little actual overlap, with only three 

genes in common. Th is suggests that the given identities 

of signature genes are not nearly as important as the 

biological process of which they are but one repre sen-

tative. Cementing this point, it was shown that, using the 

same dataset and similar but non-identical methodology, 

many diff erent 70-gene poor prognosis signatures of 

equivalent accuracy can be derived out of the original 

data [19]. Furthermore, a diff erent type of approach 

compared expression data from primary tumors of 

various tissues to those of metastatic adenocarcinoma 
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lesions and found a discriminating 128-gene metastasis 

signature. Th is signature was furthermore shown to be 

active in a subset of primary tumors - with this subset 

having a signifi cantly poorer prognosis than the rest of 

the patients [20].

Th ese studies revealed strong implications to the meta-

stasis genetic program debate. Specifi cally, they argued in 

diff erent ways that metastatic propensity must indeed be 

captured within the phenotypes under selection at the 

primary tumor stage, otherwise no such prognostication 

would be possible. However, this argument suff ers from 

conceptual diffi  culties - why would a metastatic pheno-

type be under selection in cells of the primary tumor? - 

and also contradicts the classic work of Fidler and others. 

Furthermore, the paucity of matched primary tumor and 

metastatic lesion pairs (n = 2 in [11] and n = 8 in [14]) 

renders these clinical studies unable to truly address the 

question of metastasis-specifi c genetic events. While 

these diffi  culties could perhaps be considered academic, 

an issue of more immediate concern is that the functional 

interchangeability and lack of overlap between these 

signatures has resulted in the proposal of few, if any, 

protein products as potential therapeutic targets for 

blocking metastatic progression. Functional - rather than 

purely bioinformatic - studies are therefore required to 

give further understanding to the metastasis genetic 

program.

Animal models of metastatic progression

To test whether there could be genes and signaling 

pathways whose activation specifi cally aff ects metastatic 

progression, experimental animal models of breast 

cancer progression have been utilized. Compared to 

clinical profi ling studies, animal models of metastasis 

have several critical advantages, which stem largely from 

the ability to isolate and characterize both primary 

tumors and distant metastatic lesions, and to manipulate 

the expression levels of one to several genes at a time to 

directly test their roles in disease progression. Such 

methodology has profoundly advanced the understanding 

of how, on a mechanistic level, the metastatic program is 

executed, and has also provided further insights into the 

complexity of metastatic disease.

Advancing Fidler’s classic work [1,21], several studies 

have used in vivo selection approaches to ultimately 

deter mine which genes drive metastasis to which organs, 

with the breast-to-bone, -lung, and -brain tropisms each 

having been investigated to date (Table 1) [22-24]. Such 

investigations have involved experimental metastasis 

assay xenografts of weakly metastatic cells followed by 

isolation of secondary lesions in the tissue of interest. 

Microarray-based comparisons of the parental lines to 

aggressive, organ-tropic sublines have yielded the signa-

tures of genes under selection during the late stage meta-

static program of interest. Juxtaposing the breast-to-bone 

Table 1. Gene expression signature analysis of breast cancer

Study Signature Size (genes) Type Validation

van ‘t Veer et al. [15] Poor prognosis 70 Classifi er Clinical

Wang et al. [17] Poor prognosis 76 Classifi er Clinical

Ramaswamy et al. [20] General metastasis 128 Classifi er Clinical

Chang et al. [34] Wound healing 512 Physiological response Clinical

Finak et al. [37] Stromal 26 Classifi er Clinical

Troester et al. [38] Stromal 155 Classifi er Clinical

Farmer et al. [39] Stromal 50 Classifi er, metagene Clinical

Chi et al. [42] Epithelial hypoxia 168 Physiological response In vitro, clinical

Winter et al. [44] Hypoxia 99 Classifi er, metagene Clinical

Buff a et al. [41] Hypoxia 51 Classifi er, metagene Clinical

Hu et al. [43] VEGF 13 Classifi er Clinical

Kang et al. [23] Bone metastasis 102 Tissue tropism Animal

Minn et al. [24] Lung metastasis 95 Tissue tropism Animal, clinical

Bos et al. [22] Brain metastasis 243 Tissue tropism Animal, clinical

Bild et al. [50] Myc, E2F3, Ras, Src, β-catenin 248, 298, 348, 73, 98 Signaling pathway Clinical, in vitro

Nguyen et al. [52] WNT in lung cancer 81 Signaling pathway Animal, clinical

Padua et al. [55] TGF-β [53] 153 Signaling pathway Animal, clinical

Zhang et al. [54] Src [50] 172 Signaling pathway Animal, clinical

TGF, transforming growth factor; VEGF, vascular endothelial growth factor.
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and -lung studies, several fi ndings are particularly infor-

mative to the conceptual framework of metastasis. Firstly, 

the bone and lung metastasis programs are distinct. 

While the bone and lung metastasis signatures (BMS and 

LMS) contain 102 and 95 genes, respectively, only six 

genes are common to both. Secondly, bone metastasis 

genes appear to be particular to bone microenvironment 

functionality, whereas lung metastasis genes have less 

obvious roles in the lung microenvironment and appear 

instead to facilitate general aggressive growth and 

invasive ness. BMS genes such as CXCR4, CTGF, and 

IL-11 have been shown to play key roles in the ‘vicious 

cycle’ [25] of cancer cell-driven osteolysis [26-28], while 

LMS genes such as ID1, MMP1 and 2, and SPARC have 

been shown to promote the general phenotypes of 

growth, invasion, and adhesion, respectively [29-31]. Un-

sur prisingly, then, the bone metastasis gene expression 

program has little overlap with the 70-gene poor prog-

nosis signature, while the LMS has signifi cant overlap 

with multiple poor prognosis signatures and can indeed 

be used for eff ective prognostication.

Th e organ-specifi c metastasis studies have also laid the 

groundwork for advanced, mechanistic studies to further 

dissect the processes of breast cancer progression. 

Studies have assessed, for example, the physiological role 

of the metalloproteinases MMP1 and ADAMTS1 in 

breast cancer bone metastasis and uncovered a role for 

epidermal growth factor receptor inhibitors in targeting 

the reactive stroma in osteolytic metastasis [32]. In lung 

metastasis, the combinatorial eff ects of COX2, EREG, 

and MMP1 and 2 were shown to promote primary tumor 

angiogenesis and extravasation of metastatic cells from 

the lung capillaries [33]. Here it was also found that 

pharmacological inhibition of these genes with targeting 

small molecule inhibitors ablated these phenotypes in 

aggressive lung metastasis breast cancer models.

Taken together, the results from these landmark clinical 

and experimental animal studies indicate that both sides 

of the metastasis genes debate are partially correct. On 

one hand, some degree of metastatic propensity is under 

selection at the primary tumor stage, as the prognos ti-

cation studies would have failed were this not the case. 

On the other hand, some other components of the 

metastatic program must arise later, otherwise the animal 

studies would not have succeeded in fi nding such striking 

diff erences between primary and secondary, organ-

specifi c lesions. Th us, it appears that, while there is 

indeed an early (primary tumor stage) metastatic pro-

gram under selection, it should appropriately be con-

sidered necessary but not suffi  cient for distant metastasis 

to occur. More importantly, the tumors of metastatic 

disease have an at least moderately diff erent genetic 

makeup to those of the primary tumor, and eff ective 

treatments will likely need to target the factors critical to 

microenvironment-specifi c tumor survival. In short, the 

functional power of experimental models must be 

synergized with the relevance of clinical datasets to 

appropriately explore the genes and pathways that defi ne 

and undergird breast cancer metastatic progression.

Integrated studies to understand breast cancer 

metastasis signaling

Central to the advances in understanding of metastasis-

specifi c gene expression changes was the aforementioned 

recognition that, while the individual genes of various 

prognosis signatures may be interchangeable, the signal-

ing pathways they represent are consistent. Pathway-level 

analyses therefore have several advantages over both 

single gene and gene expression profi le studies. Com-

pared to single gene studies, they can take advantage of 

the statistical power of gene sets, in which the activity 

readout is not dependent on the expression of any single 

gene but, rather, is determined by the concerted enrich-

ment of the group overall. And in comparison to profi les, 

they test the activity of genes involved in a biologically 

defi ned (and therefore experimentally testable) pheno-

typic process.

Several studies have looked at signal transduction path-

ways or sets of genes of similar function as the unit of 

analysis to study metastatic progression and prognosti-

cation (Table 1). One approach started with the long 

standing observation that the physiology of the tumor-

stroma interface appears to have much in common with 

that of a wound that is in the healing process, given the 

potent proliferative, invasive, and angiogenic stimulations 

in both contexts. Using a 512-gene ‘core serum response’ 

(CSR) signature as representative of the wound healing 

gene expression program, Chang et al. [34] found that 

CSR-active patients had signifi cantly worse prognoses 

than CSR-inactive patients and were largely characterized 

as belonging to the ‘basal-like’ breast cancer subtype. 

Furthermore, several CSR genes and proteins involved in 

cell-cell communication (ESDN and SDR1) and extra-

cellular matrix remodeling (LOXL2, PLOD2, and PLAUR) 

were shown to be upregulated in invasive ductal carci-

noma samples by tissue microarray analysis. Th us, the 

CSR can be fi rstly considered a distinct prognosis 

classifi er with similar power to previous signatures. How-

ever, in being defi ned by a specifi c physiological process 

(rather than general good versus poor prognosis), it is far 

more biologically coherent than previous signatures. In 

particular, such work has given rise to the concept of the 

‘reactive stroma’ [35] as a crucial component in meta-

static progression. As metastasis is defi ned by invasion 

into foreign tissue, stromal components such as cancer-

associated fi broblasts have been shown to undergo 

infl ammatory-like responses that help mediate tumor 

progression [36]. Furthermore, gene expression profi les 
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characteristic of tumor-associated stromal tissue can 

successively classify and prognosticate patients into 

appro priate subgroups and outcomes [37,38]. Interest-

ingly, stromal signatures can not only distinguish good 

from poor prognosis, but also have been shown to predict 

response of breast cancer patients to chemotherapeutic 

treatment [39].

Other physiological responses have been used as the 

basis for hypothesis-driven investigations into pathways 

that could be promoting metastatic progression. Th e 

hypoxia response is one such physiological program that 

is thought to enable metastatic invasion into the circu-

latory system. Under conditions of low oxygen (hypoxia), 

which are common in large tumors, the hypoxia-

inducible factor-1α transcription factor subunit is 

stabilized and activates a pro-angiogenic gene expression 

program that results in enhancement of local vasculari-

zation. Th e angiogenic response is thought to play a dual 

role in tumor progression. While fi rst functioning to 

supply the growing (and starving) tumor with oxygen and 

other essential nutrients, angiogenesis also aids in tumor 

meta stasis by providing entryways for primary tumor 

cells into the circulatory system [40]. Analyses in both 

breast and head and neck cancer [41-44] have described 

hypoxic responses and used them to prognosticate 

patient groups across a variety of cancer types. Response 

signature derivation methods varied considerably, as did 

signature size and gene identity (Table 1). While one 

approach used in vitro hypoxia-induced genes for 

signature building [42], others started with small sets of 

known hypoxia-response genes and built metagene 

networks off  of them for prognostication eff orts [41,44]. 

Despite methodology diff erences, all approaches had 

high rates of success in patient prognostication in various 

cancers. Interestingly, a vascular endothelial growth 

factor-based signature was found to be especially active 

in distant metastases compared to primary tumors or 

their local metastases, supporting the hypothesis that 

primary tumors and distant meta stases do harbor 

signifi cant gene expression diff erences despite overall 

clustering-based similarities [43]. Experi mental analyses 

have further investigated the role of the hypoxic response 

in animal models of organ-specifi c breast cancer 

metastasis, fi nding that while bone and lung metastases 

utilize diff erent hypoxic gene response programs and 

have diff erent dependence on angiogenic response, both 

pathological conditions are highly respon sive to hypoxia 

inhibitor treatments [45].

Although pathway-based analyses highlight the func-

tional eff ects of concerted gene expression changes, they 

typically shed little light on one of the key questions in 

metastatic progression, which is how to fi nd the under-

lying genetic mutations that drive these large-scale 

expres sion program changes. However, by treating 

functional or pathway-based expression profi les as a 

pheno type that can be used for linkage analyses, method-

ology has been developed to fi nd driver mutations in 

metastatic progression. Focusing on the CSR signature, a 

genomic method termed ‘SLAMS’ (stepwise linkage 

analysis of microarray signatures) was designed to fi nd 

candidate master regulators within cytogenetic abnor-

mali ties linked to CSR activity [46]. A large region of 

genomic amplifi cation on chromosome 8q was found to 

be most strongly linked to activation of the CSR profi le, 

and mechanistic work indicated that overexpression of 

resident 8q genes Myc and COP9 was suffi  cient to 

activate the CSR signature.

Such approaches have begun to bridge the gap between 

prognosis signatures and the underlying, driver muta-

tions that activate them. While the Myc oncogene has 

long been known to be crucial for tumor progression 

[47], its role in promoting metastatic progression has 

remained unclear. Th e SLAMS approach highlighted 

Myc in a novel context as the potential activator of a 

metastasis signaling program, but the actual functional 

contribution of Myc transcriptional activity to tumor 

progression was not investigated. However, later work 

has directly tested the role of Myc signaling in metastatic 

progression using a variety of model systems. Building off  

of the SLAMS approach, Wolfer et al. [48] searched for 

potential regulators of multiple poor prognosis signatures 

using the MCF7 breast cancer cell line as a testing 

platform. Th rough a variety of informatics approaches, 

Myc activity was predicted and then validated to activate 

many (10 to 40%) of the genes in all of the poor prognosis 

signatures that were tested. Crucially, this cell line-based 

work was validated in vivo by demonstrating that stable 

knockdown of Myc in late stage MDA-MB-231 cells led 

to a dramatic reduction in lung metastasis burden with out 

signifi cantly aff ecting the growth of the primary tumor.

While work based on cell lines and xenograft mouse 

metastasis models has advantages in terms of tractability 

and effi  ciency, transgenic mouse models are often 

considered more biologically relevant. To study Myc-

based profi le induction and breast cancer progression, 

tumor subtypes were investigated in a mouse mammary 

tumor virus (MMTV)-Myc model of tumorigenesis [49]. 

Here it was observed that the MMTV-Myc transgene 

induced a striking variety of histological subtypes, with 

the ‘epithelial to mesenchymal transition/squamous’ type 

predicted to have poor prognosis by an independently 

derived metastasis signature. Accordingly, mice with 

tumors of this subtype indeed had far greater incidences 

of lung metastases than those of other subtypes. 

Furthermore, the epithelial to mesenchymal transition/

squamous signature was found to be elevated in ‘triple 

negative’ (estrogen receptor, progesterone receptor, and 

Her2 negative) poor prognosis patients in a clinical 
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analysis, thus providing more evidence for Myc 

oncogene-based signaling in promoting metastatic 

progression.

Th e importance of the Myc pathway in metastatic 

progression underscores the concept that some degree of 

the metastatic signaling program could be driven by 

classic oncogenes or other well-known signaling cascades 

that can adapt to promote metastasis-specifi c gene 

expres sion changes. To aid in pathway-based analyses, 

key signatures have been derived for assessing the path-

way activity of Src, H-Ras, E2F3, Myc, β-catenin [50], 

TCF/Wnt [51,52], and transforming growth factor 

(TGF)-β [53] by activating the pathway chemically or 

genetically and performing microarray profi ling experi-

ments. A key method for utilizing the power of these 

signatures has involved interrogating the activity of such 

pathways in clinical breast cancer datasets stratifi ed by a 

phenotype of interest and then testing the eff ects of 

pathway activation on the relevant metastatic phenotype 

in the appropriate in vivo breast cancer progression 

model. In this fashion, powerful studies found that Src 

signaling mediates long-term survival (latency) and 

eventual outgrowth of clinical and experimental bone 

metastasis [54], whereas TGF-β activity promotes meta-

static dissemination to the lung, rather than bone tissue 

[55]. Furthermore, the intersection of the TGF-β and 

lung metastasis signatures was eff ectively used to narrow 

the list of candidate dissemination mediators and eff ect-

ively identify ANGPTL4 as a novel, TGF-β-responsive 

lung metastasis gene. Pathway activity studies have been 

undertaken in other cancer types, with implications for 

breast cancer resulting from included analyses. For 

example, eff orts to uncover signaling activity governing 

metastasis from lung carcinomas found that a lung WNT 

signaling program was functional in promoting meta-

stasis from lung cancer lines and prognostic of lung 

cancer patients in clinical databases [52]. Notably, bio-

informatic analyses indicated that the lung WNT signal-

ing program was not successful in prognosticating breast 

cancer. By extension, then, WNT signaling may be 

considered of lesser importance in breast cancer progres-

sion, thus narrowing the focus of breast cancer metastasis 

to aforementioned candidate pathways such as Src and 

TGF-β.

Novel pathways in metastasis

Clearly, well-known signaling pathways, such as the Myc, 

TGF-β, and Src pathways, are driving some components 

of breast cancer metastasis progression. However, given 

the complexity of the metastatic program, it would not be 

surprising to fi nd novel master regulators or key 

mediators of metastatic progression. One study used a 

hypothesis-driven approach to investigate the role of 

SATB1, a so-called ‘genome organizer’ that localizes to 

heterochromatin and recruits chromatin-remodeling 

enzymes and transcription factors to induce large scale 

transcriptional changes [56]. Cell line and large tissue 

array analyses found SATB1 to be strongly correlated to 

poor prognosis. In vivo analyses showed that SATB1 was 

both necessary and suffi  cient to promote both lung 

metastasis and primary tumor progression. Microarray 

analysis of SATB1 signaling indicated remarkably pene-

trant gene expression changes, with signifi cant regulation 

of multiple pertinent signatures, such as the 70-gene 

poor prognosis signature, and both the BMS and LMS. 

Curiously, despite the striking results, SATB1 signaling 

has not been linked to a known signal transduction 

pathway, and has also been shown to not promote the 

initially reported phenotypes [57]. Conceptually, its role 

as a general ‘genome organizer’ is diffi  cult to reconcile 

with the induction of such phenotypically specifi c and 

potent gene expression changes. Th us, SATB1 presents a 

challenge to understanding metastasis signaling and 

suggests that large scale epigenetic regulators may play 

an important, yet underappreciated, role in tumor 

progression. Future studies will be required to explain the 

mystery.

Another recent analysis, much like the SLAMS 

approach, started with the motivating concept that muta-

tions driving metastatic progression should be identi-

fi able by their residence in areas of conserved cytogenetic 

abnormalities in poor prognosis tumor specimens. Using 

a computational approach termed ‘ACE’ (analysis of copy 

number abnormalities by expression data), Hu et al. [58] 

bypassed direct assessments of cytogenetic abnormalities 

and inferred them via interrogating clinical microarray 

expression data of genes according to chromosomal loca-

tion. Combining the clinical expression datasets from 

three previous studies [15-17], the ACE approach 

identifi ed a conserved window of amplifi cation on 

chromo some 8q22 in poor prognosis breast cancer 

patients. A combination of in vitro and in vivo analyses 

led to the hypothesis that the gene Metadherin (MTDH) 

was the functional target of this amplifi cation, and in vivo 

xenograft experiments strongly supported this view. 

Interestingly, further informatics analyses using the 

NCI-60 database indicated that MTDH was also strongly 

associated with chemoresistance. Th is second phenotype 

was experimentally validated, highlighting MTDH as an 

example of a rare class of dual-functional genes that are 

active in two aspects of cancer progression. While 

MTDH was shown to aff ect the expression of many genes 

of relevance to the metastatic and chemoresistance 

phenotypes, the key signaling pathways upstream and 

downstream of MTDH remained elusive. Several other 

studies have recently explored MTDH signaling, with the 

NF-κB, phosphoinositide 3-kinase-AKT, Ha-Ras, FOXO3a, 

and Myc pathways [59-62] all having been suggested as 
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activating, mediating, or augmenting MTDH function-

ality. Th us, MTDH represents another novel mediator of 

malignant breast cancer progression with exciting, yet 

inconclusive, eff ects on breast cancer signaling.

Conclusion

Clinical profi ling studies, experimental models of disease 

progression, and especially the combination of both have 

greatly advanced the understanding of breast cancer 

metastasis since the turn of the century. However, despite 

the highlighted advances, metastasis remains a poorly 

understood biological process. Multiple genes and signal-

ing pathways have been shown to have the ability to 

infl uence metastatic progression, but few universal 

signaling events have been established as truly essential 

to the metastatic program. Confounding issues - clinical, 

experimental, and technical - continue to pose problems 

for a fi rm understanding of the underlying biology. 

Clinical datasets, for example, very rarely contain expres-

sion data from metastatic lesions that can be matched to 

their corresponding primary tumors. And experimental 

studies, of course, always come with extensive assump-

tions that can never truly be shown to be valid. Examples 

include the assumptions that the eff ect of the immune 

system (for xenograft studies), the eff ect of genetic 

diversity in the host, and the diff erences between mice 

and humans are small if not negligible. Furthermore, 

technical challenges range from trivial to dramatic. With 

microarray platforms continuing to evolve, signatures 

from older studies are becoming more diffi  cult to 

interpret in light of newer studies with more probes and 

diff erent chemistries. Additionally, tumor specimens 

(unless obtained via laser capture microdissection) are 

typically in fact a mixture of tumor cells and stromal 

cells, making it diffi  cult to determine whether a gene of 

interest is being expressed by the tumor, stroma, or both.

Th ese challenges notwithstanding, the metastasis fi eld 

is progressing rapidly and will continue to do so if it can 

take advantage of new methodologies, technologies, and 

conceptual ingenuities. Notably, the unabated ‘omics’ 

revolution is now off ering avenues for several new 

approaches in metastasis prognostication and mechanis tic 

hypothesis building. For example, several groups are 

utilizing next generation sequencing technology for 

whole-genome sequencing of primary tumors and 

matched metastases [63,64]. Such analyses will surely 

advance the ability to identify metastasis-specifi c driver 

mutations so long as the ‘data overload’ problem does not 

cripple the analyses. Additionally, proteomics-based 

approaches are advancing at a rapid pace as mass 

spectrometry technologies continue to evolve. While 

current sensitivity levels may make whole-cell proteomics 

approaches cumbersome, subcellular fractions are now 

being sequenced at the protein level with success [65,66]. 

Appropriate utilization of omics-level DNA-, RNA-, and 

protein-based approaches can only be expected to 

synergize in unraveling the mystery of the breast cancer 

metastasis genetic program.
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