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Abstract

Introduction Individuals with germline mutations in the BRCA1
gene have an elevated risk of developing breast cancer, and
often display characteristic clinicopathological features. We
hypothesised that inactivation of BRCA7 by promoter
methylation could occur as a germline or an early somatic event
that predisposes to breast cancer with the phenotype normally
associated with BRCA1 germline mutation.

Methods We examined seven cases from breast-ovarian cancer
families with tumours that showed BRCA1-like pathology but
did not have detectable BRCA1 or BRCA2 germline mutations
present. Methylation levels were tested by several quantitative
techniques including MethyLight, methylation-sensitive high
resolution melting (MS-HRM) and a newly developed digital MS-
HRM assay.

Results In one patient, methylation of 10% of the BRCAT
alleles was detected in the peripheral blood DNA, consistent
with 20% of cells having one methylated allele. Buccal mucosa
DNA from this individual displayed approximately 5% BRCA1
methylation. In two other patients, methylation of BRCA71 was
detected in the peripheral blood at significantly lower but still
readily detectable levels (approximately 19%). Tumour DNAs
from these three patients were heavily methylated at BRCAT.
The other patients had no detectable BRCA7 methylation in
their peripheral blood. One of seven age-matched controls
showed extremely low levels of methylation in their peripheral
blood (approximately 0.1%).

Conclusion These results demonstrate that in some cases of
breast cancer, low-level promoter methylation of BRCA1 occurs
in normal tissues of the body and is associated with the
development of BRCA1-like breast cancer.

Introduction

In 1994, BRCA1 was identified as the first major gene asso-
ciated with familial breast cancer predisposition [1]. Since
then many inactivating mutations in BRCA1 have been identi-
fied as breast cancer predisposition alleles.

Breast cancers associated with BRCA 1 mutations often show
characteristic histological features including high grade, high
mitotic count, solid architecture and prominent lymphocytic

infiltrates, all features resembling so-called medullary cancer
[2-4]. BRCAT-associated tumours are usually negative by
immunohistochemistry for the oestrogen receptor (ER), the
progesterone receptor (PR) and HER2 [5-7]. However, the
majority of breast cancers that exhibit a BRCA 7-like pheno-
type do not harbour detectable germline mutations in BRCAT.
Some of this discordance may be due to epigenetic defects in
breast cancer susceptibility genes such as BRCA17 contribut-
ing to breast cancer predisposition.

ER = oestrogen receptor; kConFab = Kathleen Cuningham Consortium for Research in Familial Breast Cancer; MS-HRM = methylation-sensitive

high resolution melting; PR = progesterone receptor.
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Recent reports of somatic methylation (or epimutations) affect-
ing an allele of the MLH1 gene in patients with hereditary non-
polyposis colorectal cancer indicate inactivation of tumour
suppressor genes by promoter methylation can occur early in
development or possibly in the germline [8-10]. Allelic methyl-
ation is functionally equivalent to a mutation in that loss of
activity of the second allele arising from a mutation, loss of het-
erozygosity or a second methylation event will inactivate the
gene.

Methylation of the BRCA1 promoter has been shown to occur
in approximately 20% of breast cancer patients [11-14]. Spo-
radic tumours with BRCA1 promoter methylation have been
reported to be ER and PR negative [13,14], or to display sim-
ilar pathological features to those of BRCA 1-mutated heredi-
tary breast cancers [15]. Furthermore, tumours with BRCA1
methylation appear to have similar global gene expression pro-
files to BRCA1 mutated tumours [16] and similar genomic
copy number profiles [17].

Other authors have claimed that BRCA1 methylated tumours
have distinct pathologies to those seen in BRCAT mutated
tumours [18]. The discrepancy may at least in part be resolved
by the hypothesis that the timing of BRCA1 methylation will
influence tumour phenotype; the earlier in tumorigenesis meth-
ylation occurs, the greater the similarity to tumours arising from
germline BRCA1 mutations. It must also be taken into consid-
eration that while most tumours arising in BRCA7 mutation
carriers have typical pathology, a sizeable minority do not.

We hypothesised that some individuals are predisposed to
develop breast cancer with the features associated with
BRCA1 mutations because they carry a methylated BRCAT
allele in their somatic tissues.

Materials and methods

Individuals and study samples

The research was completed in compliance with the Helsinki
Declaration. The Ethics of Human Research Committee of
Peter MacCallum Cancer Centre approved the study
(approval number 02/70). Individuals used in the study were
enrolled in the Kathleen Cuningham Consortium for Research
in Familial Breast Cancer (kConFab). kConFab identified
seven breast cancer cases (KCF1-7) with BRCA1-like fea-
tures for analysis. kConFab provided DNA extracted from
peripheral blood leukocytes from each case and DNA from
buccal mucosa of patient KCF3. Tumour material from the
KCF1, KCF2, KCF3, KCF4 and KCF6 cases was available.
Four unstained, formalin-fixed, paraffin-embedded sections
from each tumour were provided for analysis. DNA was
extracted from the paraffin sections using the DNeasy tissue
kit (Qiagen, Hilden, Germany). Normal control DNAs were pro-
vided by the Peter MacCallum Cancer Centre tissue bank.
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Methylation analysis

CpGenome Universal Methylated DNA (Chemicon, Millipore,
Billerica, MA, USA) was used as the 100% methylated control
and DNA extracted from peripheral blood mononuclear cells of
normal individuals was used as unmethylated control DNA.
Bisulfite modification of DNA was performed with the Meth-
ylEasy kit (Human Genetic Signatures, Sydney, Australia)
according to the manufacturer's instructions. Methylation
standards were constructed by diluting 100% methylated
control DNA (bisulfite modified) in a pool of normal DNA
(bisulfite modified) at 50%), 25%, 10%, 5% and 1% ratios.

Methylation of the BRCA1 promoter was assessed using real-
time methylation specific PCR (MethyLight) [19] and
methylation-sensitive high resolution melting (MS-HRM) [20].
All samples were run in triplicate for each assay. The locations
of the MethyLight and MS-HRM primers and probes on the
BRCAT promoter are illustrated in Figure 1. The MethyLight
assay assessed five CpG sites and the MS-HRM assay
assessed four sites. Careful design of each assay was
required to avoid amplification from the BRCA1 pseudogene.
The HMBS gene was used as a control for the BRCA1 Meth-
yLight assay. Primer sequences are available on request.

Experiments were performed on the RotorGene™ 3000 (Meth-
yLight assays) and RotorGene™ 6000 (MS-HRM assays)
instruments (Corbett Research, Sydney, Australia). The
MethyLight data was analysed by obtaining the take-off (Ct)
and amplification efficiency values for each sample for BRCA 1
and HMBS from the comparative quantitation tab of the Rotor-
Gene™ analysis software and comparing them to the values
for the 100% methylated DNA according to the Pfaffl method
of relative quantification [21].

Digital MS-HRM was developed to confirm the results of the
BRCA1 MethyLight and MS-HRM assays. Serial 10-fold dilu-
tions of bisulfite modified DNA from the methylation positive
samples were made and replicates of each dilution were
amplified by MS-HRM. The dilution at which amplification of
some replicates dropped out was then chosen for further anal-
ysis. Multiple replicate amplifications for the selected dilution
were performed and compared to 0% and 100% methylated
control DNA. Reactions or 'clones' resembling fully methylated
and unmethylated DNA were then used in a second round
amplification with M13 tagged primers. The products were
then sequenced using M13 primers using the BigDye termina-
tor kit (Applied Biosystems, Foster City, CA, USA).

Results

We examined the peripheral blood leukocyte DNA of seven
breast cancer cases (KCF1 to KCF7) (ages of onset ranging
from 35 to 51 years) for BRCAT methylation. Each of these
cases, from the kConFab familial cancer repository, had a fam-
ily history of breast or ovarian cancer with BRCA1-like breast



Figure 1
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Map of the BRCA1 promoter region studied by the MethyLight and MS-HRM assays. The numbering of the promoter is according to that used by
Rice et al. [24]. TSS denotes the transcription start site. The positions of the primers flanking the MethyLight and MS-HRM amplicons are indicated

as well as the position of the MethyLight probe.

pathology as defined by kConFab criteria, but were negative
for mutations in the coding regions of BRCA1 and BRCA2.

We used both real-time methylation specific PCR (Methy-
Light) [19] and methylation-sensitive high resolution melting
(MS-HRM) [20] to assess methylation levels. The primers for
each assay spanned the proximal BRCA7 promoter region
and were carefully designed so that the methylation status of
the highly homologous pseudo BRCAT region [22] was not
assessed (Figure 1). Three of the individuals showed detecta-
ble BRCA1 methylation in DNA from their peripheral blood
leukocytes, but unexpectedly all showed less than the 50%
methylation that would be expected for methylation at one
allele in every cell.

KCF3 was the sample showing the highest level of methylation
of BRCA1. BRCAT methylation was detected in the periph-
eral blood DNA at approximately 14% methylated alleles esti-
mated by MethyLight, and 10% methylated alleles estimated
by MS-HRM (Figure 2). Buccal mucosal DNA from this patient
showed approximately 10% methylated alleles estimated by
MethyLight and 5% methylated alleles estimated by MS-HRM.
Thus, both methods gave a similar estimate of methylation.

To verify that the deviation from the expected 50% methylation
was not due to PCR bias or other artefacts, we developed a
third methodology specifically to accurately quantify the levels
of methylation. Digital MS-HRM is an adaptation of MS-HRM
that enables rapid counting of methylated and unmethylated
alleles. The digital approach to quantification has been
described previously [23]. However, previous methods have
relied on subsequent secondary analysis whereas HRM uses
in-tube analysis with a consequent rapid generation of results.

In digital MS-HRM, bisulfite modified DNA is diluted to the
point where the individual PCR reactions contained 0, 1 or

occasionally 2 amplifiable templates. This eliminates the prob-
lem of PCR bias where unmethylated or methylated templates
have different amplification efficiencies, hence skewing the
actual methylated to unmethylated ratios. Multiple replicates of
the diluted sample are amplified by PCR where it is expected
that many reactions will not amplify because of the absence of
template. The melting profile of each reaction or 'clone' is then
used to determine its methylation status. The proportion of
methylation in a sample can be readily estimated by comparing
the number of reactions with a peak with elevated melting tem-
perature characteristic of methylation, over those with an lower
melting temperature unmethylated peak.

Digital MS-HRM was performed on peripheral blood and buc-
cal mucosal DNA from KCF3. For the peripheral blood DNA,
13 of the 107 clones had a methylated peak on melting
analysis (Figure 3), equating to 12% BRCA1 methylation in
the peripheral blood. In the buccal mucosa, 4 of the 69 clones
were methylated, equating to 6% methylation. These results
confirmed the level of BRCA1 methylation estimated by both
MethyLight and MS-HRM. When considered at a cellular
rather than an allelic level, we estimate that the peripheral
blood contains approximately 25% of cells with one methyl-
ated BRCAT1 allele and that the buccal mucosa contains
approximately 10% methylated cells.

Representative methylated and unmethylated clones from the
digital MS-HRM experiments were sequenced to confirm the
methylation status (Figure 3). A stretch of 22 bases containing
four CpG sites was analysed. For the peripheral blood DNA of
KCF3 (Figure 3), four of the six methylated clones had a cyto-
sine present at all four CpGs, confirming the methylation seen
by other methodologies. One clone had cytosines present at
all CpGs sites but also had an additional cytosine present at a
conversion site where a thymine would be expected, preced-
ing a CpG site. The other non-CpG cytosines were converted
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Methylation analysis of BRCAT in KCF3. (a) MethyLight results for BRCA1 and control gene HMBS for samples from KCF3. The BRCA1 Methy-
Light assay indicates the presence of methylated DNA for the peripheral blood leukocyte (PBL), buccal mucosa (BUC) and tumour (TUM) of KCF3.
The HMBS control gene indicates the amount of bisulfite modified DNA for each sample of KCF3. (b) Methylation-sensitive high resolution melting
(MS-HRM) results for samples from KCF3. The PBL sample (pink curve) and the BUC sample (green curve) show methylation levels close to the
10% methylated control. The TUM sample (orange curve) shows a much higher level of methylation.

indicating that this corresponded to a methylated allele. For
one other clone only two of the CpGs were methylated but this
may have been due to incomplete conversion.

Patient KCF3 developed two breast cancers in her lifetime, the
first at 43 years and the second at 51 years. DNA from the first
tumour was available for analysis and both MethyLight and
MS-HRM assays indicated that BRCAT methylation was
present. Analysis using digital MS-HRM estimated the tumour
methylation at 61% (14/23 clones).

We examined the peripheral blood and tumour DNA of KCF3
for methylation at other loci that are commonly methylated in
breast cancer to assess whether the observed BRCA71 meth-
ylation was due to a propensity to methylate at a global level.
The samples were screened with MethyLight. None of
RASSF1A, RARB, GSTP1, TWIST, CDH1, HIC1 and HIN1
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proved to be methylated (results not shown) indicating that the
methylation in this patient seen is not part of an overall
increased methylation of CpG islands.

In two of the remaining cases, KCF1 and KCF4, methylation of
BRCAT1 was detected at approximately 1% in the peripheral
blood DNA using MethyLight and MS-HRM (Figure 4). Digital
MS-HRM was used to confirm the observed methylation in
these samples and 1 of 33 clones for KCF1 and 1 of 44 for
KCF4 showed a fully methylated peak. Analysis of tumour
material from both of these individuals demonstrated close to
100% methylation using MethyLight and MS-HRM.

Tumour material was available from two of the four patients
that did not have any detectable levels of methylation in periph-
eral blood DNA. These tumours showed no BRCA1 methyla-
tion using MethyLight or MS-HRM, indicating that methylation
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Digital methylation-sensitive high resolution melting (MS-HRM) and sequencing for KCF3 peripheral blood DNA. The blue curve indicates the
unmethylated control. The black curve indicates the methylated control. The green curves indicate unmethylated amplicons. The red curves indicate
methylated amplicons. Sequencing for the unmethylated and methylated controls are shown above the digital MS-HRM results. Sequences of the
indicated red amplicons (lettered) are shown to right of the figure where the letter to the right of the chromatograph corresponds to the curve shown.

of BRCAT1 in the peripheral blood corresponds to tumour
methylation.

The peripheral blood leukocyte DNA of seven age-matched
normal controls was examined for BRCA7 methylation for
comparison to the breast cancer patients. Six of the seven
control samples did not have any detectable BRCA 1 methyla-
tion by MethyLight or MS-HRM. One sample produced a
methylated signal for two of three replicates by MethyLight
only, estimated at the level of 0.1% relative to the 100% meth-
ylated control.

It is pertinent to consider the region that was spanned by the
primers in each of our assays (Figure 1). In all cases, we
designed primers that would not amplify the highly homolo-
gous duplication of the BRCA1 promoter region and exons 1
and 2 [22]. The MS-HRM assay overlaid the proximal promoter
region and assessed the CpGs at -37, -29, -21 and -19

according to the nomenclature of Rice et al. [24]. Previous
authors have shown some methylation in this region, com-
monly at -37 and -29 in peripheral blood in individuals with and
without breast cancer [24,25]. We observed methylation in
only three individuals using both MS-HRM and MethyLight
assays. The MethyLight assay, while overlapping this region
(the 3' ends of each primer being at -37 and +27), would only
give a positive result if there were methylation at the probe
binding site covering CpGs at +14, +16 and +19. This indi-
cates that the three peripheral blood DNAs with detectable
methylation were all methylated over a wider region than just
-37 and -29. Remarkably, all three patients had tumours that
were methylated for BRCA 1 as measured by both assays. The
-37 and -29 CpG sites could possibly represent a seeding
area where under conditions of epigenetic instability, methyla-
tion of this small region would spread to the entire promoter
causing inactivation of the entire BRCA1 promoter region.
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Methylation analysis of BRCA7 in KCF1 and KCF4. (a) MethyLight results for BRCA1 and the control gene HMBS for samples from KCF1 and
KCF4. The BRCA1 MethyLight assay indicates the presence of methylated DNA for the peripheral blood (PBL) and tumour (TUM) for both individu-
als. (b) The methylation-sensitive high resolution melting (MS-HRM) assay also shows the presence of methylation in the peripheral blood and

tumour for both individuals.

Detailed analysis of the digital HRM assay was also instructive.
Whereas the region assessed included -37 and -29, it also
included the CpGs at -21 and -19 that tend not to be methyl-
ated. When the individual sequences of the amplified alleles
were examined, all but one showed methylation at all four sites.

Discussion

In this study, we demonstrate the presence of BRCAT pro-
moter methylation in normal non-epithelial tissues of patients
that developed breast cancer. The levels of BRCA1 methyla-
tion in the peripheral blood (and buccal mucosa for KCF3)
were confirmed by three independent methods, MethyLight,
MS-HRM and digital MS-HRM. The observed methylation is
not due to disseminated breast cancer cells in the blood
because these do not occur at sufficiently high levels to be
detected by our assay. Chen et al. have also looked for
BRCA1 methylation in BRCA1 and BRCAZ2 mutation-nega-
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tive women with a family history of breast cancer [25]. They did
not detect any methylation in 41 patients. Each of these
patients had approximately 10 clones examined, which would
have made it difficult to detect low numbers of fully methylated
alleles especially if there was any PCR bias in the amplification
prior to cloning. It should also be noted that these women
were unselected for BRCA 1-like features and that the BRCA1
methylation status of their tumours was unknown.

We observed one peripheral blood leukocyte DNA sample in
our age-matched control panel that had an extremely low level
of BRCA1 methylation. This low level of methylation was not
detectable by the MS-HRM assay. However, this result does
raise the question of whether this individual does have an ele-
vated risk of developing breast cancer in the future.



Many other questions remain to be addressed in future
research following the intriguing findings presented here. Our
results raise the possibility that methylation and associated
silencing of BRCA1 could represent a germline alteration that
underlies some cases of familial breast cancer. DNA from the
parents of individual KCF3 were not available, so we were una-
ble to determine if this was an epimutation that may have been
inherited. In retrospect, patients from cancer families may not
be the best subjects to examine for somatic methylation
because of the likely limited transmissibility through the germ-
line [10].

It is unclear why the levels of methylation in the somatic tissues
were not at the 50% level that we expected. An interesting
parallel may be drawn to a recent study showing somatic
methylation in a hereditary non-polyposis colorectal cancer
family. About 10% of the MSH2 gene alleles that segregated
with the disease were methylated in DNA from peripheral
blood [26]. The alteration was stably inherited in numerous
individuals with the disease haplotype. The inheritance was
not of a methylated allele per se, but of a propensity to meth-
ylate that was presumably associated with the allelic
sequence. Although a methylation propensity could explain the
deviation seen from expected allelic methylation ratios in our
results, upstream sequencing of KCF3 (data not shown) did
not detect any possible variation that could account for this.

Conclusion

Our findings represent a new paradigm for somatic methyla-
tion leading to disease predisposition. Rather than an allelic
methylation as has previously been reported for MLH1, a
mosaic level of BRCA1 methylation has been identified in the
somatic tissues of some breast cancer patients. We believe it
will be important to examine individuals with early onset or
multifocal breast cancer for BRCA7 methylation lacking a
strong family history. We consider that widespread somatic
methylation of BRCAT is an important and as yet unrecog-
nised cause of some BRCA1-like cancers. Further studies will
be required to determine the frequency and functional signifi-
cance of widespread somatic BRCA1 methylation.
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