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Abstract

Introduction The role of the cellular microenvironment in breast
tumorigenesis has become an important research area.
However, little is known about gene expression in histologically
normal tissue adjacent to breast tumor, if this is influenced by
the tumor, and how this compares with non-tumor-bearing
breast tissue.

Methods To address this, we have generated gene expression
profiles of morphologically normal epithelial and stromal tissue,
isolated using laser capture microdissection, from patients with
breast cancer or undergoing breast reduction mammoplasty (n
= 44).

Results Based on this data, we determined that morphologically
normal epithelium and stroma exhibited distinct expression
profiles, but molecular signatures that distinguished breast
reduction tissue from tumor-adjacent normal tissue were absent.
Stroma isolated from morphologically normal ducts adjacent to

tumor tissue contained two distinct expression profiles that
correlated with stromal cellularity, and shared similarities with
soft tissue tumors with favorable outcome. Adjacent normal
epithelium and stroma from breast cancer patients showed no
significant association between expression profiles and
standard clinical characteristics, but did cluster ER/PR/HER2-
negative breast cancers with basal-like subtype expression
profiles with poor prognosis.

Conclusion Our data reveal that morphologically normal tissue
adjacent to breast carcinomas has not undergone significant
gene expression changes when compared to breast reduction
tissue, and provide an important gene expression dataset for
comparative studies of tumor expression profiles.

Introduction
Despite significant advances in breast cancer treatment, 26%
of patients with early disease develop metastasis and suc-

cumb to the disease [1]. None of the current prognostic indi-
cators can reliably predict the outcome for such patients [2-6].
Microarrays have been widely used for expression profiling of

CSR = core serum response; DTF = desmoid type fibromatosis; ER = estrogen receptor; GGH = gamma-glutamyl hydrolase; GITC = guanidinium 
isothiocyanate; GO = Gene Ontology; LCM = laser capture microdissection; LIMMA = linear models for microarray analysis; PAM = prediction around 
medoids; PR = progesterone receptor; SAGE = serial analysis of gene expression SAM = significance analysis of microarrays; SFT = solitary fibrous 
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breast cancer and other malignancies and, because of their
genome-wide nature, they allow for the identification of gene
expression changes that have occurred between normal and
tumor breast tissues. Using these approaches, several studies
have successfully identified breast cancer subtypes and prog-
nostic markers; however, the utility of such markers in the clinic
remains open [7-11].

The majority of studies focusing on breast have used hetero-
geneous material from whole tissue sections with a few excep-
tions where epithelial cells have been specifically isolated
[12]. The presence of loss of heterozygosity in normal stromal
breast tissue adjacent to, and distant from, the tumor site has
been demonstrated, suggesting that changes in stroma may
have occurred [13]. Since surgery is the standard of care, nor-
mal cells harboring alterations that may be relevant to cancer
progression may remain and, thus, could have important clini-
cal implications.

The normal human breast consists of ductal epithelium and
surrounding stroma. The stroma consists of two compart-
ments (intralobular stroma and extralobular stroma), accounts
for more than 80% of the breast volume, and provides nutrition
and structural support for the normal epithelium. Carcinoma of
the breast, as well as benign hyperplastic conditions, are
thought to originate from epithelial cells or progenitor epithelial
cells of the terminal duct-lobular unit [14]. However, growing
evidence indicates that stroma may play an important role in
cancer initiation and progression [15-17]. Little is known
regarding gene expression profiles in morphologically normal
breast stroma or epithelium adjacent to breast tumor tissue.

At the clinical level, normal tissue is defined as morphologically
normal. Laser capture microdissection (LCM) allows one to
isolate nearly pure cell populations from a heterogeneous envi-
ronment, and the material is suitable for microarray gene
expression analysis [12,18,19]. This approach has allowed the
comparison of gene expression profiles between normal
human breast epithelium and tumor tissue [12]. Epithelium
derived from regions of the breast adjacent to tumor, consid-
ered normal by all histological and clinical standards, has been
shown to have a distinct gene expression profile from tumor
tissue [12]. However, in these cases sample sizes have been
small when comparing reduction and adjacent tissue (n = 3
reduction samples) and, furthermore, stroma was not consid-
ered [12]. Thus, knowledge of gene expression patterns in
normal tissue would be invaluable to improve the precision of
gene expression signatures for poor or good prognosis.

In the present study, LCM was used to dissect normal epithe-
lium and normal stroma derived from patients undergoing
breast reduction mammoplasty or surgical treatment of breast
cancer. Gene expression profiles reveal that morphologically
normal stroma and epithelium from breast cancer patients are
not statistically distinct from epithelium and stroma isolated

from reduction mammoplasties and do not possess gene
expression changes associated with standard clinical charac-
teristics.

Materials and methods
Clinical data
Clinical data were collected for the samples from the Breast
Cancer Functional Genomics Group clinical database. Cellu-
lar and fibrotic stroma were identified by visual inspection of
hematoxylin and eosin stained tissue sections under a micro-
scope. Cellular stroma was defined as tissue with more than
1,000 stroma cells uniformly distributed throughout the field of
view (4× magnification), while fibrotic stroma was defined as
tissue with less than 800 stroma cells in the field of view (4×
magnification) and concentrated primarily around the ducts.

Tissue collection and staining procedures
All tissue specimens and associated clinical data were col-
lected at McGill University Health Center (Montreal, Canada)
between 2000 and 2004 in accordance with the protocols
approved by the research ethics committee. Patient consent
was obtained on an individual basis for all patients participat-
ing in this study. Of 44 patients selected for the study, 34
patients had invasive ductal carcinoma and 10 were healthy
donors undergoing reduction mammoplasty. Tissue samples
were collected within 30 minutes after surgery, embedded in
TissueTek OCT (Somagen, Edmonton, Alberta, Canada) and
stored in liquid nitrogen until use. Frozen specimens were cry-
osectioned in 10-micron slices, stained using a hematoxylin
and eosin staining protocol and dehydrated in ethanol and
xylene as recommended by the LCM manufacturer (Arcturus,
Mountain View, CA, USA). Following dehydration, the slides
were air dried for 20 minutes and subjected to LCM. All normal
tissues adjacent to tumor were microdissected from regions at
least 2 mm away from tumor margins. Normal and adjacent
stroma were sampled exclusively from the extralobular stromal
compartment.

LCM, RNA extraction and linear amplification
All tissues included in this study were re-examined by a clinical
pathologist dedicated to the project. Tissue specimens were
microdissected into epithelium and stroma using a PixCell IIe
LCM system (Arcturus). All microdissections were performed
within three hours following tissue staining. Total RNA was
extracted from each population of microdissected cells using
a GITC (guanidinium isothiocyanate) extraction protocol.
Briefly, LCM caps were incubated for 5 minutes (room temper-
ature) in 200 μl GITC extraction buffer (4 M GITC, 25 mM
sodium citrate pH 7.0, 0.1 M β-mercaptoethanol, 0.5% N-lau-
roylsarcosine) supplemented with 1.6 μl β-mercaptoethanol.
Subsequently, 20 μl of 2 M NaOAc, pH 4.0, 220 μl of water-
saturated phenol and 60 μl of chloroform-isoamyl alcohol
(23:1) were added to the extraction buffer. Following 15 min-
utes incubation on ice and centrifugation (12,000 rpm, 15
minutes) the aqueous phase was removed and RNA was pre-
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cipitated with 2 μl glycogen (GenHunter, Nashville, Tennes-
see, USA) and 200 μl isopropanol. Samples were placed at -
80°C for 30 minutes and centrifuged at 4°C (12,000 rpm) for
30 minutes to pellet RNA. Pellets were washed with 70% eth-
anol, air dried and subjected to DNAseI treatment (Roche,
Basel, Switzerland). DNAseI treatment was performed in the
presence of an RNase inhibitor (Invitrogen, Carlsbad, Califor-
nia, USA). Subsequently, samples were re-extracted as
described above and re-suspended in 10 μl of diethylpyrocar-
bonate-treated water. RNA was quantified using a RiboGreen
assay (Molecular Probes, Carlsbad, California, USA). Subse-
quently, 2 to 4 ng of total RNA was subjected to two rounds
of T7 linear amplification using Ambion Amino Allyl Mes-
sageAmp kit (Ambion, Austin, Texas, USA) and labeled with
Cy3 and Cy5 dyes according to the manufacturer's proce-
dure. Prior to microarray hybridizations, amplified products
were quantified using a spectrophotometer (Nanodrop, Wilm-
ington, Delaware, USA) and subjected to BioAnalyzer to assay
for quality (Agilent Technologies, Santa Clara, California,
USA).

Microarray hybridization
Whole Human Genome 44 K arrays (Agilent Technologies,
product G4112A) were used for all experiments. RNA sam-
ples (500 ng) were subjected to fragmentation followed by 18
h hybridization, washing, and scanning (Agilent Technologies,
model G2505B) according to the manufacturer's protocol
(manual ID #G4140-90030). Samples were hybridized
against Universal Human Reference RNA (Stratagene, ID
#740000, La Jolla, California, USA). Duplicate hybridizations
were performed for all samples using reverse-dye labeling.

Immunohistochemistry
Candidate tissue markers were validated by immunohisto-
chemistry. Frozen tissue sections (10 μm thick) were
defrosted at room temperature for 30 s, fixed in acetone (room
temperature, 10 minutes) and air dried for 2 minutes. Subse-
quently, tissue sections were blocked with Peroxidase Block-
ing Reagent (DakoCytomation, Glostrup, Denmark). Primary
antibodies were diluted at 1:50 and 1:15 for anti-c-kit (polyclo-
nal rabbit anti-human CD117, DakoCytomation), and anti-
CD31 (polyclonal mouse anti-human, DakoCytomation) and
applied to the tissue sections for 45 and 15 minutes, respec-
tively. Following a brief wash with TBS-T (tris-buffered saline
tween-20), secondary antibodies were applied for 30 and 20
minutes, respectively. Labeled polymer-HRP anti-rabbit (EnVi-
sion+ System HRP(DAB), DakoCytomation) was used as a
secondary antibody for c-kit staining and labeled polymer-HRP
anti-mouse (EnVision+ System HRP(DAB), DakoCytomation)
for CD31 staining. After a short wash with TBS-T, DAB Sub-
strat-Chromogen Solution (EnVision+® System HRP(DAB)
DakoCytomation) was applied for up to 5 minutes for color
development.

Data preprocessing, normalization, and quality control
Microarray data were feature extracted using Feature Extrac-
tion Software (v. 7.11) from Agilent with the default parame-
ters. Raw data were uploaded to the NCBI Gene Expression
Omnibus database (GEO) and is accessible as data series
GSE4823. Outlier features on arrays were flagged by the soft-
ware. Arrays were required to have an average raw signal
intensity of 1,000 in each channel, and a signal to noise ratio
above 16 per channel. MvA plots were examined for signs of
hybridization or labeling problems. Replicate arrays were
required to have a concordance above 0.944. This level was
established empirically using sets of known good replicate
arrays in our database.

Data preprocessing and normalization were automated using
the BIAS system [20]. Raw feature intensities were back-
ground corrected using the RMA background correction algo-
rithm [21,22]. Resulting expression estimates were converted
to log2-ratios. Within array normalization was performed using
spatial and intensity-dependent loess [23]. Median absolute
deviation scale normalization was used to normalize between
arrays [24].

Class discovery
Using class discovery under correlation distance and Eucli-
dean distance metrics, 10,000 bootstrap iterations were per-
formed to assess the significance of the observed clusters
using the pvclust package for R[25]. Multidimensional scaling
was applied to reduce the dimensionality of the data and per-
mit visualization. Chi-square tests and logistic regression were
applied to discrete and continuous variables, repsectively, to
test for association with data partitions (clusters). The varia-
bles tested included estrogen receptor (ER) status, progester-
one receptor (PR) status, lymph node (LN) status, HER2
receptor status, menopause status, age, grade, tumor size,
and recurrence.

Class distinction
Both the linear models for microarray analysis (LIMMA) and
significance analysis of microarrays (SAM) algorithms were
used to identify differentially expressed gene sets from which
to build class predictors [26-29]. Genes from LIMMA were fil-
tered for significance, (false discovery rate adjusted p value ≤
0.01), fold change (≥2.0), intensity above background (A >
6.0), while genes identified by SAM were filtered by signifi-
cance (q ≤ 0.3), fold change (≥2.0), and intensity (A > 6.0).

Class prediction
The prediction around medoids (PAM) algorithm was used to
build predictors based on the filtered gene sets [30]. Cross
validation was used to test the predictors. This procedure
included independent selection of candidate gene sets for
each cross validation step. Differentially expressed genes
were mapped onto Gene Ontology (GO), and GO terms were
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tested for overrepresentation using the hypergeometric distri-
bution [26].

Assessing patient specific gene expression effects
We wanted to assess the relative contribution of different fac-
tors to the overall variability of gene expression observed in our
data. Principal component analysis allows one to succinctly
summarize data in a reduced number of dimensions (principal
components) [31]. The principal components are ordered by
the amount of variation (or signal) in the data that they explain.
We performed principal component analysis on the patient
matched adjacent stroma and epithelial data. Consecutive
sequences of the first 10 principal components were tested
for association with clinical characteristics using multivariate
analysis of variance (MANOVA). Bonferroni multiple testing
correction was applied to the resulting p values [31].

Identification of tissue markers
LIMMA was used to identify differentially expressed genes
between tissues in individual patients and obtain expression
estimates for the matched data ([28,32]. Genes not exhibiting
differential expression in at least 50% of samples were
excluded from further analysis (B-statistic > 0). A paired t-test
was used to identify genes whose patient-matched LIMMA
expression estimates were significantly different from zero
over the panel of patients (false discovery rate adjusted p
value < 1e-5).

Comparison with publicly available cancer datasets
The expression of gene signatures from a number of publicly
available datasets was examined in normal tissue.

The stroma-specific and epithelium-specific gene lists identi-
fied by Allinen and colleagues [33] contained 231 and 97
unique genes, respectively, of which 189 and 89 were located
(mapped) successfully on the Agilent chip. The activated and
inactivated core serum response (CSR) genes from Chang
and colleagues [34] contained 228 and 233 genes, respec-
tively, of which 209 and 211 were mapped to the Agilent array.
The intrinsic breast cancer gene list of Sorlie and colleagues
[35] contained 553 genes, of which 473 were mapped to the
Agilent array. The desmoid type fibromatosis (DTF) and soli-
tary fibrous tumor (SFT) specific gene lists from West and col-
leagues [36] contained 493 and 293 genes, respectively, of
which 415 and 238 were mapped to the Agilent array. Genes
that were likely to be expressed in normal breast tissue were
selected from these gene sets by selecting genes with vari-
ance >1 in the normal tissue data; 7.3% of genes in the normal
dataset have variance >1, and enrichment for high variance
genes in the various gene sets was measured by a χ2 good-
ness of fit test.

Genes from the Agilent whole genome arrays were mapped to
the Agilent 24 K arrays used in the Netherlands cancer dataset
[8]. The 24 K arrays used by Van de Vijver and colleagues [8]

contained 24,498 features. Approximately 10,000 contigs on
the 24 K array could not be mapped to GenBank identifiers.
Of the remaining 14,339 identifiers, 12,112 were mapped to
features on the 44 K Agilent array. Expression of the genes
from the normal tissue signature was then examined in the 295
breast cancer samples from the Netherlands cancer dataset
[8].

Accession numbers
The GEO accession number of the array data series is
GSE4823.

Results
Identification of stroma- and epithelium-specific gene 
expression profiles
To determine the gene expression profiles of morphologically
normal epithelium and stroma derived from reduction mammo-
plasties and breast cancer tissue, we integrated the use of
LCM and T7-based RNA amplification with DNA microarrays.
LCM provides an accurate means by which to isolate morpho-
logically normal epithelium and stroma adjacent to breast can-
cer that is free from infiltrating tumor cells. This allows gene
expression profiles to be generated from specific cell types
rather than whole tissue [18]. LCM was used to isolate
matched morphologically normal epithelial and stromal cells
from 34 patients with invasive ductal carcinoma, and 10
patients who underwent reduction mammoplasty (Figure 1).
Patient and tumor characteristics of the selected invasive duc-
tal carcinoma patients are shown in Table 1 (and Additional file
4). In general, 2 to 5 ng of RNA were extracted from dissected
normal epithelial ducts and stroma. We, as well as others, have
established that T7 linear amplification preserves the ratios of
mRNA abundance between mRNA species, provided all sam-
ples undergo the same number of amplification rounds [12,37-
41].

Expression profiling was performed on cells isolated from mor-
phologically normal epithelial and stromal tissue from 34 cases

Figure 1

Laser-capture microdissection of epithelium and stroma from normal breast specimensLaser-capture microdissection of epithelium and stroma from normal 
breast specimens. Frozen tissue sections (10 micron) stained with 
hematoxylin and eosin.
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of invasive ductal carcinoma and 10 cases of reduction mam-
moplasty using Agilent whole genome arrays. A total of 66
samples were analyzed, of which 32 were isolated from stroma
(26 from histologically normal ducts adjacent to tumor, and 6
from reduction mammoplasty), and 34 from epithelium (25
from histologically normal ducts adjacent to tumor, and 9 from
reduction mammoplasty) (Table 1). Each of the LCM captured
samples was interrogated in duplicate on a 44 K genomic fea-
ture microarray. Since several studies have suggested that
normal stroma as well as morphologically normal terminal duct
lobular units from cancer patients undergo loss of heterozy-
gosity [42], we first performed a cluster analysis to determine
whether the patient-matched stroma and morphologically nor-
mal epithelium were similar to those from reduction mammo-
plasty patients. After normalization, hierarchical clustering was
applied to the 66 samples and the complete panel of genes
(44 K genome features). Based on gene expression, the
stroma and epithelium clustered according to tissue type (Fig-
ure 2a). Stroma surrounding histologically normal ducts from
tumor specimens and stroma isolated from reduction mammo-
plasty clustered together. Similarly, morphologically normal
epithelium from tumor specimens co-clustered with epithelium
from reduction mammoplasties (Figure 2a). We observed sim-
ilar tissue-specific clustering when using a multidimensional
scaling class discovery approach (Figure 3; see Materials and
methods). Only three adjacent stroma samples were found to
behave as outliers, clustering with epithelial tissue at the whole
genome level, an error rate comparable to other large scale
microarray data sets (Figures 2a and 3).

To identify the genes responsible for the tissue-specific clus-
tering observed in Figure 2a, class distinction was applied to
identify all genes differentially expressed between tissues.
Markers were defined based on patient matched stromal and
epithelial samples (22 patients and 44 samples; see Materials
and methods; Table 1). In total, 883 markers were identified
that showed differential expression between matched epithe-
lium and stroma in at least 50% of individual samples (LIMMA
log odds >0), as well as differential expression between
pooled epithelium and stroma samples (false discovery rate
adjusted p value 1e-5; Additional file 8). Using these markers,
hierarchical clustering was applied to the complete sample set
(44 patients, 66 samples), and resolved the samples into epi-
thelial and stromal clusters, including correct classification of
the three outlier samples (Figure 2b). These genes define a
normal tissue gene expression signature.

The complete list of GO terms overrepresented by genes in
the normal tissue signature is located in Additional file 9 and
summarized in Figure 4. Tissue specific genes in the normal
signature include known fibroblast, endothelial, and epithelial
genes, as well as potentially novel tissue markers. Epithelium-
specific transcripts include genes associated with epithelial
cell-cell junctions and the basal lamina, epithelial cell differen-
tiation as well as epidermal growth factor receptor activity

Table 1

Summary of clinical characteristics of patients sampled for this study

Characteristic Number

Adjacent 34

Reduction 10

ER

Positive 21

Negative 12

Normal 10

NA 1

Total 44

HER2

Positive 8

Negative 22

Normal 10

NA 4

Total 44

PR

Positive 13

Negative 20

Normal 10

NA 1

Total 44

Lymph node status

Positive 14

Negative 20

Normal 10

NA 0

Total 44

Recurrence

Positive 5

Negative 38

Normal 0

NA 1

Total 44

Menopausal status

Post 16

Pre 13

Peri 1

NA 4

Surgical 10

Total 44

Age (mean ± SD) 52.18 ± 12.54

Tumor size (mean ± SD) 24.76 ± 14.06

ER, estrogen receptor; NA, not available; PR, progesterone receptor.
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(Table 2). Stroma specific genes included extracellular matrix
structural constituents, genes with collagen binding activity,
and genes involved in angiogenesis and response to wound-
ing (Table 2, Figure 4). Immunohistochemistry for selected
proteins using commercially available antibodies demon-
strated epithelial-specific expression of Kit, as well as elevated
expression of von Willebrand factor and cd31 in stroma, and
confirmed the microarray results (Figure 5).

Normal stroma and epithelial specific gene sets are not 
predictive of clinical characteristics
Epithelial and stromal samples were analyzed separately to
determine whether there were significant differences within
tissue classes between reduction mammoplasty-derived tis-
sue and adjacent morphologically normal tissues isolated from
tumor sections. Samples in each tissue class were subjected
to hierarchical clustering and subsequent bootstrapping to
test for significance using all genes. Although epithelial and
stromal samples each show two primary subclusters, these
clusters were not statistically significant (Figure 6a,c, respec-
tively). Importantly, adjacent and reduction samples were not
associated with the subclusters in either tissue class (p =

0.732 and p = 0.075, respectively, χ2 test for association).
This analysis was repeated using a subset of genes (filtered by
coefficient of variation ≥4), and showed similar results (data
not shown).

Interestingly, morphologically normal adjacent stroma, without
reduction mammoplasty samples, was found to consist of two
significant subclusters whether using all genes (Figure 6d), or
a filtered subset of genes (p = 1.64e-3, Fisher's exact test).
These clusters were found to be associated with stromal 'cel-
lularity' (Figure 7, defined in Materials and methods), which
was assessed based on the hematoxylin and eosin staining of
the normal tissues (p = 5.1e-3 and 2.1e-4, respectively, χ2 test
for association). A total of 669 genes were identified as differ-
entially expressed between the adjacent stroma clusters using
the LIMMA software with a false discovery rate less than 0.01,
a fold change of at least 1.9, and a B statistic of at least 30.
The majority of these genes were elevated in the pauci cellular
fibrotic cluster when compared with the cellular stromal clus-
ter. Furthermore, no association was found between clinical
characteristics of the primary tumor, and statistically signifi-
cant subclusters in either tissue class (p ≤ 0.01, data not

Figure 2

Hierarchical clustering and heatmap showing the segregation of samples by tissue typeHierarchical clustering and heatmap showing the segregation of samples by tissue type. (a) Hierarchical clustering of normal tissue samples shows 
segregation by tissue type (red, adjacent epithelium; blue, reduction epithelium; green, adjacent stroma; orange, reduction stroma). (b) Heatmap 
showing tissue specific gene expression clusters.
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shown) (Additional files 10 and 11). In contrast, no significant
clusters were found within morphologically normal adjacent
epithelium (Figure 6b, Additional file 3).

To determine whether gene expression patterns in normal
breast epithelium or stroma derived from breast cancer
patients can predict clinical or pathological features of the cor-
responding cancers, we applied a class prediction [30]
approach and constructed tissue specific predictors for ER,
PR, HER2, grade, tumor size, age, menopause status, recur-
rence, and lymph node status (Additional files 2 and 3). We
used cross validation at every step of predictor construction
[43], including the initial step of candidate gene selection.
None of the predictors had low prediction error or low vari-
ance, with an average 50% mean prediction error by cross val-
idation (Additional files 2 and 3). This analysis demonstrated
that any gene expression differences detected in normal epith-
lium and stroma were neither associated with, nor predictive
of, the clinical characteristics of the primary tumors.

Morphologically normal samples from different individuals are
expected to show variations in gene expression due to a
number of factors, including noise, differences in tissues, inter-
individual variation, potential clinical differences, and the sim-
ple fact that different genes are expressed at different levels.
Our goal was to identify the relative contribution of each of
these sources of variation to our data (Additional file 12, panel
A). Principal component analysis and multivariate analysis of
variance revealed that the primary sources of variation in the
data could be attributed to differences between tissues (Bon-
ferroni corrected p = 7.9e-16, principal components 2 and 3),
representing 3.98% of the variation between genes (Addi-
tional file 12, panel B), and differences between individuals
(Bonferroni corrected p = 4.9e-6, principal components 3

through 8), representing 3.58% of the variation between
genes. The majority of the variation in the data (84.58%) could
be attributed to variations in expression between genes within
a single sample. The strong correlation between arrays intro-
duced by the common reference design of our experiment
caused this variation to be common across all arrays (Addi-
tional file 13). Together, these effects accounted for 92.13%
of the observed variation in the data. The remainder of the var-
iation in gene expression was not associated with any known
factors.

The normal epithelium and stroma expression set 
identify subtypes of breast carcinoma
The identification of gene expression profiles for morphologi-
cally normal stroma and epithelium provide unique datasets
that can be used to investigate breast cancer datasets for sim-
ilarity to the normal tissue profile in order to gain a better
understanding of breast cancer expression profiles. When our
stroma and epithelium profile was compared to a dataset
established by a serial analysis of gene expression (SAGE)
approach from dispersed cells from one reduction mammo-
plasty sample [33], we observed a minimal overlap. Our nor-
mal stroma signature (562 unique genes) showed only a 25
gene overlap with that generated by SAGE for a mixture of
fibroblast, endothelial and myofibroblast cells (mapped 189
unique genes), and a 2 gene overlap with the epithelium sig-
nature (mapped 89 unique genes), whilst our normal epithe-
lium signature (321 unique genes) overlapped by 12 genes
with the epithelium signature identified by SAGE. Although the
overlaps are statistically significant (p = 1.33e-15 and p =
9.07e-12, respectively, hypergeometric test), the relatively low
overlap between the signatures may be due to use of only a
single patient in the SAGE data when compared to 44
patients in our dataset and our filtering criteria. However, the

Figure 3

Multidimensional scaling of normal stroma and normal epitheliumMultidimensional scaling of normal stroma and normal epithelium. Two tissue-specific clusters are observed. Adjacent and reduction tissue do not 
segregate into separate clusters. The epithelial tissue cluster contains two adjacent stroma sample outliers.
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fact that no genes are in common between the epithelial gene
set and that of the fibroblast data obtained by SAGE supports
the purity of both cell populations in these studies.

To investigate the implication of the expression profiles gener-
ated from normal breast tissue in situ to those of tumor related
genes in breast cancer, we analyzed the expression of genes
in 295 breast carcinomas using a previously published dataset
[8]. The normal tissue signature was mapped to 349 genes on
the custom 24 K Agilent arrays used for the cancer study [8].
Hierarchical clustering of the 295 patient samples present in
the cancer dataset using the genes in our normal tissue
(stroma plus epithelium) signature, revealed two primary clus-
ters of samples (Figure 8). Based on tissue specificity defined
by our normal signature, the larger cluster showed enrichment
for stroma specific genes (p = 0.0038, hypergeometric test)
and showed an under-representation of epithelium specific
genes (p = 0.001, hypergeometric test). However, this enrich-
ment for stroma specific genes was not ubiquitously observed
for all of the 257 tumor samples in the cluster, nor was it found
to be associated with either the HER2, luminal A or luminal B
tumor subtypes (Figures 8 and 9). In contrast, the smaller clus-

ter showed enrichment for epithelium specific genes (p =
4.16e-13, hypergeometric test) and under-representation of
stroma specific genes (p = 4.5e-42, hypergeometric test).

The smaller of the two clusters consisted of 38 samples,
which were identified as ER negative, HER2 negative, and PR
negative (Figure 9). This ER/HER2/PR negative cluster was
found to express many normal and basal subtype specific
genes as defined by Sorlie and colleagues [35], including ker-
atin-5, keratin-17, and gamma-glutamyl hydrolase (GGH).
Based on expression of these markers, we identified the sam-
ples in this cluster as consisting of basal-like and normal-like
cancer subtypes as defined previously [35]. The remaining ER
negative samples in the cancer dataset were HER2 positive
and were located in the larger sample cluster. Notably, the
cluster of basal-like and normal-like samples remained when
the data was clustered using only our normal epithelium-spe-
cific gene set, whereas the cluster was not observed when
normal stroma-specific genes were used in clustering (data
not shown). This indicated that the basal subtype-specific
patient cluster was enriched in genes expressed in normal epi-
thelium when compared with other tumor subtypes.

Table 2

Selected tissue markers identified for normal stroma and normal epithelium

Stromal expression Epithelial expression p value Gene symbol Gene name

24.41 1.00 1.02E-12 SFRP4 Secreted frizzled-related protein 4

18.44 1.00 1.02E-12 AOC3 Amine oxidase, copper containing 3 (vascular adhesion protein 1)

17.46 1.00 3.30E-11 PTGIS Prostaglandin I2 synthase

17.11 1.00 7.97E-12 TEK TEK tyrosine kinase, endothelial (venous malformations, multiple 
cutaneous and mucosal)

16.68 1.00 1.02E-12 IGFBP7 Insulin-like growth factor binding protein 7

15.65 1.00 1.02E-12 COL1A2 Collagen, type I, alpha 2

15.58 1.00 7.97E-12 WISP2 WNT1 inducible signaling pathway protein 2

14.37 1.00 1.94E-12 FBN1 Fibrillin 1

13.85 1.00 1.89E-11 CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor)

1.00 2.37 8.32E-09 PPP1CB Protein phosphatase 1, catalytic subunit, beta isoform

1.00 3.07 1.30E-08 K03200 Human melanoma-associated antigen p97

1.00 3.95 2.63E-09 PERP TP53 apoptosis effector

1.00 4.08 7.50E-09 DDR1 Discoidin domain receptor family, member 1

1.00 4.75 2.11E-08 CDH1 Cadherin 1, type 1, E-cadherin (epithelial)

1.00 4.79 2.36E-07 KRT14 Keratin 14

1.00 5.14 1.60E-10 F11R F11 receptor, junctional adhesion molecule 1

1.00 6.30 1.86E-07 KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog

1.00 6.35 5.97E-08 KRTCAP3 Keratinocyte associated protein 3.

1.00 9.07 2.92E-08 ELF5 E74-like factor 5 (epithelium-specific Ets transcription factor 2)
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Normal stroma is similar to DTF tumors and fibroblasts 
with an inactivated core serum response
Few datasets have been generated for stroma, and this is the
first extensive dataset to be generated from normal stroma. To
determine whether our normal stroma data set resembled
other gene expression profiles for fibroblasts, a core set of
genes shown to be differentially regulated when fibroblasts
are stimulated with serum [44] was examined. We identified

genes from the CSR profiles that were expressed in normal tis-
sue (Additional files 6 (panel D) and 7) using a variance filter-
ing criteria (see Materials and methods). Of the unstimulated
fibroblast genes expressed in normal tissues, 84% were
expressed in stroma, while 16% were expressed in epithelium,
while the majority of genes activated in wounding were not
expressed in either tissue (Additional file 6, panel C). These
results indicate that both normal adjacent stroma and normal

Figure 4

Gene Ontology (GO) categories overrepresented in the normal stroma and normal epithelium gene signaturesGene Ontology (GO) categories overrepresented in the normal stroma and normal epithelium gene signatures. (a) GO terms overrepresented by 
genes expressed in normal stroma. (b) GO terms overrepresented by genes expressed in normal epithelium. Bars represent the fraction of genes in 
the category that were expressed. Terms of the same color are related in the GO hierarchy (gray terms are unrelated). P values for significance, and 
the total number of genes in a category are listed after the bar plot.
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reduction stroma have expression profiles more similar to
unstimulated fibroblasts.

To investigate the similarity of our normal stromal profile to that
of fibroblastic tumors, normal stroma and epithelium expres-
sion profiles were compared to the gene signatures of DTF
and SFTs [36]. Normal stroma samples expressed signifi-
cantly more DTF-specific genes than expected by chance (p ≤
2e-16, χ2 goodness of fit test), while the number of SFT-spe-
cific genes was marginally significant (p = 0.038, χ2 goodness
of fit test) (Additional files 6 (panel A), and 7). Interestingly,
normal stroma showed a statistically significant enrichment for
expression of DTF-specific genes (p = 2.48e-5) (Additional file
6, panel B).

Discussion
Knowledge of the normal breast microenvironment in which a
cancer develops is important in understanding cancer biology.
However, gene expression patterns of normal stroma and epi-
thelium in human breast cancers have not been extensively
studied. Although several studies have identified loss of heter-
ozygosity in morphologically normal breast epithelium [45-47]
and stroma [42,48] derived from breast cancer patients, other
studies have proposed that these changes were distinct from
the co-existing cancer [49]. Hence, it is unclear whether
genomic alterations observed in morphologically normal
breast tissues represent early precursors of breast cancer,
markers of increased risk, or population based polymorphisms.
In this paper, we present the most complete study to date of
gene expression in normal breast tissues. Using LCM and
whole genome microarray analysis we have characterized tis-

sue-specific gene expression and identified markers of normal
epithelium and stroma.

A primary goal of our study was to establish if a cancer-asso-
ciated expression signature could be detected in morphologi-
cally normal breast tissues obtained from patients with breast
cancer. Several approaches were used to address this ques-
tion. First, we compared gene expression in morphologically
normal tissue derived from breast cancer patients to that of
healthy individuals undergoing breast reduction surgery. Sec-
ond, we investigated if the pattern of gene expression in nor-
mal breast tissues derived from breast cancer patients was
associated with clinical or pathological features of the corre-
sponding cancer. A combination of class discovery, class dis-
tinction and class prediction approaches was used to analyze
gene expression in microdissected epithelial and stroma sam-
ples (Figure 1). The results of this analysis demonstrate that
microdissected samples clustered according to tissue type,
and not according to the clinical or individual characteristics of
the patients (Figures 2, 3 and 6). Moreover, our inability to
identify statistically or biologically relevant predictors of the
adjacent and reduction classes (Additional files 2 and 3) dem-
onstrates that cancer-adjacent and breast reduction normal
tissues have essentially homogeneous expression profiles.
Furthermore, variations in gene expression between groups of
samples are not associated with clinical characteristics but
can be explained by tissue- and patient-specific variability.
These data are in agreement with a previous study [12] that
demonstrated a lack of significant differences between breast
reduction and cancer-adjacent epithelium (three samples)
using cDNA microarrays. In addition, our study now demon-
strates a lack of significant differences between breast reduc-
tion and cancer adjacent stroma.

Notably, ER status, which is often the most important classifier
of tumors, both clinically and at the molecular level [4,10], did
not associate with any clusters observed in normal stroma or
epithelium, nor were we able to identify any predictors for this
clinical category. Identical approaches of class distinction,
class prediction, and class discovery failed to identify biologi-
cally relevant or statistically significant predictors, or clusters
associated with any of the other clinical characteristics tested
(Additional files 2 and 3). These results suggest that, at the
level of global gene expression, there is no significant cancer-
associated expression signature detectable in normal breast
tissues. We cannot, however, completely rule out the possibil-
ity that some subtle changes are present but are obscured by
other effects, such as patient variability, or technical limita-
tions.

While we were unable to identify predictors of clinical charac-
teristics, there were genes differentially expressed between
some of these clinical characteristics. In most cases the func-
tional categories that were overrepresented consisted mostly
of metabolic pathways and processes. Class discovery in nor-

Figure 5

Immunostaining of normal breast tissue with anti-c-kit and anti-CD31Immunostaining of normal breast tissue with anti-c-kit and anti-CD31. 
H&E, hematoxylin and eosin.
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Figure 6

Hierarchical clustering with bootstrapping of adjacent and reduction breast tissues from gene expression dataHierarchical clustering with bootstrapping of adjacent and reduction breast tissues from gene expression data. (a) Hierarchical clustering with boot-
strapping of adjacent and reduction epithelium. (b) Histologically normal adjacent and reduction stroma. (c) Histologically normal adjacent epithe-
lium. (d) Histologically normal adjacent stroma. We used 10,000 bootstrap iterations to obtain significance scores for the observed clusters. Nodes 
are labeled with the percentage of times that the cluster is observed by bootstrapping. Only adjacent stroma showed statistically significant clusters 
at the top level. Red boxes indicate the top-level clusters that were tested for association with clinical characteristics of the samples.

Figure 7

Images of pauci cellular fibrotic and cellular stroma sections from selected patientsImages of pauci cellular fibrotic and cellular stroma sections from selected patients. Images were taken at 4× and 10× magnification.
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mal adjacent stroma revealed two statistically significant clus-
ters associated with stromal cellularity. While we were unable
to identify a predictor of stromal cellularity, the differentially
expressed genes identified in the class distinction were over-
represented in a number of interesting functional categories,
including branching morphogenesis, endocytosis, neurogene-
sis, and patterning of blood vessels. For example, NOTCH4, a
receptor for the Notch pathway that has been shown to inhibit
angiogenesis [50], was elevated in the pauci cellular fibrotic
stroma cluster when compared to the higher cellularity stroma,
while JAG1, a Notch ligand shown to induce angiogenesis in
some head and neck tumors [51], was elevated in highly cel-
lular stroma compared to pauci cellular fibrotic stroma. Since
we have been careful to sample stroma from the extralobular
compartment, it is unlikely that these differences represent
extralobular and intralobular stroma. However, we cannot rule
out that these may be differences between stromal compart-
ments that have previously not been identified based on mor-
phology.

Comparison of our data to published data sets reveals the sim-
ilarity of normal stroma and epithelium expression signatures
with previously published gene expression profiles of epithe-

lium and collective fibroblasts, endothelium, and myofibrob-
lasts isolated from reduction mammoplasty samples [33].
Previous studies have examined the gene expression of cul-
tured fibroblasts in response to serum and demonstrated that
this expression program resembled that of a wound response
[44] as well as expression profiles from tumors with fibroblas-
tic features [36]. The serum/wound response expression pro-
file was predictive of metastasis and progression in several
carcinomas. Our normal breast stroma profile exhibits an
expression pattern similar to unstimulated fibroblasts [44,52]
and demonstrates that DTF tumors are more related to normal
stroma than a SFT signature [36]. Since a DTF tumor profile
has been shown to be associated with favorable outcome in
breast tumors [36], the enrichment for DTF genes in our nor-
mal stroma profile is consistent with this finding.

Notably, clustering of a large breast cancer dataset [8] with
the normal stroma and epithelium profile identified two signifi-
cant clusters of samples (Figure 8). The smaller of the two
clusters consisted of 38 samples, which were all identified as
ER negative, HER2 negative, and PR negative. This cluster
expressed genes specific to basal-like and normal-like cancer
subtypes, including keratin-5, keratin-17, and GGH. The

Figure 8

Heatmap of a cancer dataset [8] clustered using the normal gene signatureHeatmap of a cancer dataset [8] clustered using the normal gene signature. This signature identifies a distinct cluster of 38 estrogen receptor (ER)/
progesterone receptor (PR) negative, HER2 negative samples corresponding to the basal breast cancer subtype [35]. Elevated expression of nor-
mal stroma-specific genes appears in a portion of the lumenal and HER2 positive tumors, although this expression does not correlate with the known 
molecular subtypes of breast cancer.
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remaining ER negative samples were contained within the
larger cluster of 266 samples. This cluster was composed of
ER negative/HER2 positive, and ER positive/HER2 negative
samples, which are characteristic of HER2 positive and lumi-
nal cancer subtypes, respectively [11,35]. Clustering of the
cancer data using only epithelium specific genes led to
repeated observation of a distinct basal-like cluster, whereas
clustering using only stroma-specific genes led to co-cluster-

ing of the basal-like, ER positive, and HER2 positive tumors.
This is in contrast to a recent report showing successful prog-
nostic prediction in breast tumor microarray data using,
amongst others, a stroma based signature [53]. The stroma
based predictor used in that study was the wound response
signature (similar to the CSR response signature), which we
have shown is not expressed in normal stroma. Consequently,
the predictive genes of the CSR (and wounding) signature are

Figure 9

Expression of selected subtype specific markers in the breast cancer dataset [8]Expression of selected subtype specific markers in the breast cancer dataset [8]. (a) The y-axis shows the expression level of the gene, while the x-
axis identifies each sample, ordered as in Figure 8. The vertical line shows the separation between sample clusters found in Figure 8. The right-most 
cluster shows decreased expression of estrogen receptor (ESR), HER2, and progesterone receptor (PGR) in most samples, and increased expres-
sion of keratin (KRT) 5 and gamma-glutamyl hydrolase (GGH). These markers are indicative of a mixture of basal-like and normal-like tumor subtypes. 
(b) Box plots showing the distributions of expression for subtype markers in the two observed clusters.
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not selected as part of the intrinsic normal stroma signature,
and thus we do not see association with prognosis when clus-
tering using the intrinsic normal stroma genes.

A similar basal-like and normal-like cluster was identified using
the intrinsic cancer gene set of Sorlie and colleagues [35].
This indicates that the basal-like and normal-like breast cancer
subtypes are more similar to normal epithelial tissue than the
other breast cancer subtypes. This is not entirely surprising,
since normal ductal epithelium does not express high levels of
ER, PR or HER2 [54,55]. When analyzed in a different cancer
dataset, the basal-like subtype had a poor outcome when
compared to other subtypes of breast cancer [35]. We also
observed a poor outcome for the cluster of 38 ER/PR/HER2-
negative samples compared to the larger cluster of ER posi-
tive, and HER2 positive samples (p = 0.000489, Figure 10).
We found that this difference in survival could be explained pri-
marily by the ER status of the sample (data not shown). The
similarity of the basal-like and normal-like breast cancer sub-
types has previously been shown by gene expression studies
[10,11,35]. We have found that these subtypes are distin-
guished from ER positive and HER2 positive subtypes, at least
in part, by the expression of epithelium-specific genes. In con-
trast, the HER2 positive and luminal subtypes exhibit enriched
expression of stroma-specific genes. However, elevated
expression of stroma-specific genes is not ubiquitous across
all luminal or HER2 positive samples, nor is it correlated with
any identifiable tumor subtypes (Figures 8 and 9). Nonethe-

less, these differences in stromal and epithelial expression
drive the clustering of breast cancer subtypes using our nor-
mal breast tissue expression signature.

Conclusion
This study provides the first in depth analysis of gene expres-
sion in morphologically normal epithelium and stroma adjacent
to breast cancers as well as from reduction mammoplasty
specimens. Analysis of the gene expression profiles revealed
that there are no significant differences between tumor
derived and reduction mammoplasty derived tissue. The anal-
ysis of these expression profiles in other breast cancer data-
sets identifies a distinct HER2/ER/PR negative subcluster that
corresponds to a mixture of basal-like and normal-like cancer
subtypes and reveals molecular similarities between normal
breast epithelium and basal-like breast tumors with poor out-
come. Moreover, the lack of any cancer-associated patterns of
gene expression in morphologically normal breast tissues will
enhance our understanding of early changes involved in can-
cer initiation. Furthermore, these data provide a base for the
interpretation of breast cancer molecular profiling experiments
and for the discovery of novel prognostic markers.
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Additional files

The following Additional files are available online:

Additional file 1
A table listing p values for tests of association between 
clinical variables and top-level clusters (red boxes, Figure 
6) induced by clustering various subsets of the data. 
Only normal adjacent stroma shows top-level clusters 
with significant p values by the bootstrap. None of the 
clinical variables were found to be correlated with either 
top-level clusters or statistically significant subclusters 
(data not shown).
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S1.pdf

Figure 10

Survival analysis of the two sample clusters identified from the cancer data set [8]Survival analysis of the two sample clusters identified from the cancer 
data set [8]. The clusters were generated from the normal breast tissue 
signature. The estrogen receptor (ER)/progesterone receptor (PR)/
ERBB2 negative cluster consisting of 38 samples shows poor survival 
compared to the remaining samples consisting of Lumenal and ERBB2 
positive tumors (p = 0.000489).
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Additional file 2
A table listing tissue specific predictors of clinical 
characteristics based upon gene expression in adjacent 
stroma. The poor quality of the predictors is readily 
visible from the error rate for the predictors in the first 
column of the table. The error rate is the fraction of times 
the predictor misclassifies a sample under cross-
validation. Predictors were trained using gene sets from 
class distinction using SAM or LIMMA. For some 
combinations of clinical characteristics and class 
distinction algorithm, no genes passed the filtering 
criteria, and no predictor could be trained. In such cases 
the rows are omitted from the table. The gene set size is 
the initial size of the candidate gene set from which a 
predictor is built. This set is also selected under cross-
validation. The training error is the rate of 
misclassification for samples included in the training set. 
The PAM cross-validation error rate reported by the PAM 
algorithm [30] does not account for the selection of the 
candidate gene set under cross-validation. The predictor 
size is the number of genes in the predictor.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S2.pdf

Additional file 3
A table listing tissue specific predictors of clinical 
characteristics based upon gene expression in adjacent 
epithelium. The poor quality of the predictors is readily 
visible from the error rate for the predictors in the first 
column of the table. The error rate is the fraction of times 
the predictor misclassifies a sample under cross-
validation. Predictors were trained using gene sets from 
class distinction using SAM or LIMMA. For some 
combinations of clinical characteristics and class 
distinction algorithm, no genes passed the filtering 
criteria, and no predictor could be trained. In such cases 
the rows are omitted from the table. The gene set size is 
the initial size of the candidate gene set from which a 
predictor is built. This set is also selected under cross-
validation. The training error is the rate of 
misclassification for samples included in the training set. 
The PAM cross-validation error rate reported by the PAM 
algorithm [30] does not account for the selection of the 
candidate gene set under cross-validation. The predictor 
size is the number of genes in the predictor.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S3.pdf

Additional file 4
A table listing complete clinical characteristics of 
patients in this study.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S4.pdf

Additional file 5
A figure showing hematoxylin and eosin staining of (a) a 
breast reduction specimen and (b) a histologically 
normal specimen from an invasive breast carcinoma 
patient.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S5.pdf

Additional file 6
A figure showing heatmaps of normal tissue expression 
profiles clustered using published gene signatures. (a) 
SFT signature, (b) DTF signature [36], (c) activated CSR 
signature, (d) inactive CSR signature [44].
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S6.pdf

Additional file 7
A schematic outlining the gene set comparisons and 
filtering operations performed using the normal tissue 
signature and gene sets from published expression 
profiles. Circles denote gene sets, labeled by name and 
with their size. Numbers in brackets denote the size of a 
gene set after filtering for high variance genes (Var >1) in 
normal tissue; 7.36% of genes in the normal dataset 
have variance greater than 1. Intersections between 
gene sets as well as the size of filtered gene sets are 
labeled with p values denoting the significance of the 
overlap (hypergeometric test), or the significance of 
overrepresentation of high variance genes (χ2 goodness 
of fit test), respectively. The data were derived from the 
following sources: SFT/DTF (Additional file 6a,b) [36]; 
SAGE [33]; CSR (Additional file 6c,d) [44].
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S7.pdf

Additional file 8
A complete list of tissue specific expression markers 
identified in this study.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S8.XLS

Additional file 9
A complete list of GO categories overrepresented by the 
normal epithelium and normal stroma gene signatures.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S9.xls

Additional file 10
A list of genes differentially expressed between cellular 
and pauci cellular fibrotic stroma clusters.
See http://www.biomedcentral.com/content/
supplementary/bcr1608-S10.xls
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