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Abstract 

Background Histological grade is a well‑known prognostic factor that is routinely assessed in breast tumours. How‑
ever, manual assessment of Nottingham Histological Grade (NHG) has high inter‑assessor and inter‑laboratory vari‑
ability, causing uncertainty in grade assignments. To address this challenge, we developed and validated a three‑level 
NHG‑like deep learning‑based histological grade model (predGrade). The primary performance evaluation focuses 
on prognostic performance.

Methods This observational study is based on two patient cohorts (SöS‑BC‑4, N = 2421 (training and internal test); 
SCAN‑B‑Lund, N = 1262 (test)) that include routine histological whole‑slide images (WSIs) together with patient out‑
comes. A deep convolutional neural network (CNN) model with an attention mechanism was optimised for the clas‑
sification of the three‑level histological grading (NHG) from haematoxylin and eosin‑stained WSIs. The prognostic 
performance was evaluated by time‑to‑event analysis of recurrence‑free survival and compared to clinical NHG grade 
assignments in the internal test set as well as in the fully independent external test cohort.

Results We observed effect sizes (hazard ratio) for grade 3 versus 1, for the conventional NHG method (HR = 2.60 
(1.18–5.70 95%CI, p‑value = 0.017)) and the deep learning model (HR = 2.27, 95%CI 1.07–4.82, p‑value = 0.033) 
on the internal test set after adjusting for established clinicopathological risk factors. In the external test set, 
the unadjusted HR for clinical NHG 2 versus 1 was estimated to be 2.59 (p‑value = 0.004) and clinical NHG 3 versus 1 
was estimated to be 3.58 (p‑value < 0.001). For predGrade, the unadjusted HR for predGrade 2 versus 1 HR = 2.52 
(p‑value = 0.030), and 4.07 (p‑value = 0.001) for preGrade 3 versus 1 was observed in the independent external test 
set. In multivariable analysis, HR estimates for neither clinical NHG nor predGrade were found to be significant 
(p‑value > 0.05). We tested for differences in HR estimates between NHG and predGrade in the independent test set 
and found no significant difference between the two classification models (p‑value > 0.05), confirming similar prog‑
nostic performance between conventional NHG and predGrade.

Conclusion Routine histopathology assessment of NHG has a high degree of inter‑assessor variability, motivating 
the development of model‑based decision support to improve reproducibility in histological grading. We found 
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Background
Histological grading is a well-established prognostic fac-
tor for breast cancer and is associated with the aggres-
siveness of the tumour [1]. An assessment of three 
morphological features determines the histological grade 
of breast tumours. These features include tubular forma-
tion (glandular differentiation), nuclear pleomorphism, 
and mitotic counts, and each component is given a score 
from I to III. The sum of the sub-component scores ena-
bles the assignment of tumours into three grades (Grade 
1–3), referred to as Nottingham Histological Grade 
(NHG), where Grade 1 is associated with a good progno-
sis and Grade 3 is associated with a poor prognosis [2]. 
It provides prognostic information for clinically relevant 
subgroups (like estrogen receptor (ER)-positive and 
human epidermal growth factor receptor 2 (HER2)-neg-
ative patients) to determine the plan for adjuvant chemo-
therapy [3].

However, the assessment of histological grading has 
a high inter-observer variability including the assess-
ments of individual subcomponents of histological grad-
ing [4–6]. A recent nationwide study in Sweden reported 
significant inter-laboratory variabilities for histological 
grading across different pathology laboratories [7]. Such 
variabilities indicate an intrinsic uncertainty in routine 
NHG assessment and potential errors, which can cause 
both under and over-treatment of breast cancer.

Recent advances in high-resolution digital whole-slide 
images (WSIs) have greatly enhanced the computer-
based pathology workflow, paving the way to novel digital 
decision support solutions. Recently, deep learning-based 
analyses on WSIs have shown promising results in a mul-
titude of tasks, including cancer classification, grading, 
and predictions of genetic mutations in prostate and lung 
cancers [8–10].

Deep learning, especially deep convolutional neural 
networks (CNNs), has been proven to be effective for 
modelling of WSI data, including in the application of 
breast cancer histological grading. Previously models 
for the classification of grades 1 and 2 (together) versus 
grade 3 have been implemented for breast cancer [11, 
12]. Jaroensri et  al. implemented a model that classified 
the sub-components, and the sub-component score, for 
breast cancer histological grading and the prognostic 
performance, was compared against routine classification 
[13]. Wang et al. developed a model based on histological 
grade morphology in breast cancer that was applied to 

improve risk stratification of intermediate-risk patients 
(histological grade 2) [14].

To our knowledge, this is the first study focussing on 
the development of a deep-learning-based breast cancer 
histological grade classification with a three-level grad-
ing system resembling the routine NHG in breast cancer 
with prognostic evaluation. We evaluate the proposed 
model (predGrade) from the perspective of prognostic 
performance (time-to-event) in both internal test data 
and a fully independent external test cohort and compare 
it with the routine clinical grade assignment.

Methods
Study materials
The patients in this study were from two Swedish 
cohorts, SöS BC-4 (n = 2421), and the SCAN-B cohort 
(n = 1262). SöS BC-4 is a retrospective observational 
study that included patients diagnosed at Södersjukhuset 
(South General Hospital) in Stockholm between 2012 
and 2018 that had archived histological slides available 
and also available histological grade information. Patients 
that had received neoadjuvant therapy were excluded 
(n = 56). The SCAN-B cohort, which we used as an inde-
pendent external test set, includes a subset of patients 
(n = 1262) enrolled in the prospective SCAN-B study 
[15], diagnosed between 2010 and 2019 in Lund, Sweden. 
Both cohorts consist of patients diagnosed with invasive 
breast cancer. Patients’ clinical information (i.e. clini-
cal NHG, ER status, epidermal growth factor receptor 2 
(HER2) status, tumour size, and lymph node status) was 
retrieved from the Swedish National Registry for Breast 
Cancer (NKBC) (Additional file 1: Table  S1). For CON-
SORT diagram, see Fig. 1.

WSIs were generated (40X magnification) using Hama-
matsu NanoZoomer histopathology slide scanners (S360 
or XR) from clinical routine Haematoxylin & Eosin 
(H&E)-stained, formalin-fixed paraffin-embedded (FFPE) 
resected tumour slides. We included one H&E WSI per 
patient, which was either the established primary diag-
nostic fraction or otherwise the H&E WSI with the larg-
est predicted tumour area.

Image pre‑processing and deep learning modelling 
methods
WSIs were pre-processed and quality controlled in a 
standardised processing pipeline, followed by model 

that the proposed model (predGrade) provides a similar prognostic performance as clinical NHG. The results indicate 
that deep CNN‑based models can be applied for breast cancer histological grading.
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optimisation, and performance validation of the system 
(Fig. 2).

WSI preprocessing
The WSI pre-processing pipeline has been previously 
described in detail in [14]. A brief overview of the pre-
processing steps is shown in Fig. 2a. First, we generated 
tissue masks excluding most of the backgrounds from 
the WSIs. We added a maximum value of 25 on the 
Otsu threshold in order to reduce the removal of the 
tissue regions in some cases due to the high threshold 
value on the transformed saturation channel. The tis-
sue regions were divided into image patches (i.e. tiles) 
of size 1196 × 1196 pixels. The image tiles were down-
sampled by a factor of two from the original scanning 
resolution (40X) to 20X resolution (598 × 598 pixels; 
271 × 271  μm). Next, we applied the Laplacian filter 
(OpenCV package version 3.4.2) on all the image tiles 
and computed the variance of the filtered tiles. Tiles 
with a variance lower than 500 units were considered 
blurry and excluded from further analyses [16]. To mit-
igate stain colour variability, the colour normalization 
method described by Macenko et  al. [17] was applied, 
with a modification to enable WSI-level colour correc-
tion, as previously described in [14]. Lastly, we applied 
a pre-trained CNN model developed in [14] to detect 
invasive cancer in our current study population. Only 
tiles predicted as invasive cancer from the pre-trained 
model were considered as regions of interest and there-
after included in further analyses. The median number 
of invasive cancer tiles for the SöS-BC4 training set and 
SCANB cohort was 911 and 3069 per WSI (Additional 
file 1: Fig. S1).

Image analysis using deep learning
The SöS cohort was used for model development and 
internal validation. The cohort was split into the train-
ing set (n = 1695), internal test set 1 (n = 245 WSIs), and 
internal test set 2 (n = 481 WSIs) as shown in Fig. 1a). The 
training and internal test sets were split on the patient 
level and stratified by histological grading (NHG), estro-
gen receptor (ER) status, epidermal growth factor recep-
tor 2 (HER2), and Ki-67 status.

The training and optimisation of the feature extractor 
and attention module were performed on the training 
set (n = 1695) using five-fold cross  validation (CV). For 
each CV fold, the training set was split into a CV train-
ing set (80%) and a CV test set (20%) stratified by his-
tological grading (NHG) as shown in Fig.  1b. The CV 
training set was further sub-split into the feature extrac-
tor training set (50%), the attention module training set 
(40%), and the tuning set (10%). Both the feature extrac-
tor (Resnet-18 CNN) model and the attention module 
were optimised against binary class labels (NHG 1 and 
3) to ensure that the model learns high- and low-grade 
patterns despite substantial label noise (reflected by high 
inter-assessor variability in NHG grade label assign-
ments). The proposed approach implicitly assumes that 
the NHG grading follows a continuum of morphological 
changes (1–3), and that NHG2 is the intermediate group 
with the highest assessment uncertainty and inter-rater 
variabilities. We, therefore, excluded NHG 2 from the 
model optimisation. These three sub-splits were stratified 
on the clinical NHG (Fig. 1b).

The attention-based Multiple Instance Learning 
(MIL) model was considered as the CNN modelling 
architecture inspired by Lu et  al. [18]. It consisted of 
two separate trainable modules: the feature extractor 

Fig. 1 SöS‑BC‑4 and SCANB cohort descriptions and splitting criteria. a. The SöS cohort was first split into the training, internal test set 1, 
and internal test set 2 on the patient level. The split was stratified by clinical histological grading (NHG), ER status, HER2 status, and Ki‑67 status. b. 
A five‑fold cross validation (CV) split was further generated on the patient level within the training set (n = 1695 WSIs). Each CV fold consisted of a CV 
training set (80%) and a CV test set (20%) balanced on clinical NHG. The CV training set is further sub‑split into the feature extractor training set 
(40%), the attention module (32%), and the tuning set (8%). c. SCANB cohort was used as the independent external test set
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and the attention module. The feature extractor was 
trained to learn breast cancer domain-specific tile-level 
representations, and the attention module was trained 
to aggregate these tile-level representations to whole-
slide-level prediction scores. Importantly, we specifi-
cally used different sub-splits of the training set for 
feature extractor optimisation and attention module 
optimisation, respectively,

Feature extractor module
The feature extractor was a binary weakly supervised 
learning model [9, 14]. We applied the Resnet-18 [19] 
CNN architecture initialised with weights pre-trained 
from Imagenet [20]. In order to reduce overfitting, we 
included a dropout layer with a probability of 0.2 after 
the global average pooling layer. Furthermore, a fully con-
nected layer of 1024 hidden units followed by rectified 

Fig. 2 Overview of the image pre‑processing, model optimisation and performance evaluation. a. Standardised WSI preprocessing pipeline 
from retrieval of WSI at 40 × magnification to the cancer‑detected tumour tiles from the WSI. b. Schematic overview of the image modelling 
strategy, including the deep CNN feature extractor and attention module. Model optimisation, hyperparameter tuning, and model selection were 
performed by cross validation (CV). In each CV training round, the feature extractor and attention module were trained from cancer tiles in the CV 
training set. In each CV validation round, the features extractor and attention model were re‑optimised and subsequently, the CV validation set 
was evaluated. c. Two cut‑offs were further derived from the slide‑level prediction scores, which categorised the prediction scores into three‑level 
predicted grades. The cut‑offs were optimised by maximising the agreement between the predicted grade and clinical NHG. We further evaluated 
the prognostic performance of the predicted grade on recurrence‑free survival
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linear unit (ReLU) activation was added before the final 
output layer to increase the depth of the architecture. 
This model was trained on binary labels of NHG 1 versus 
NHG 3 with cross-entropy loss. We used stochastic gra-
dient descent (SGD) optimiser [21] with a learning rate 
of 1e-5 and a momentum value of 0.9. At each training 
partial epoch end, we used the tuning set to validate the 
training performance and save the best model accord-
ing to the lowest validation loss from the tuning set. We 
applied an early stopping to terminate the training when 
the validation loss showed no improvement after 50 con-
secutive partial epochs.

Attention module
We used the feature extractor to extract a 512-dimen-
sional feature vector from the average pooling layer for 
each image tile in the attention module training set and 
the tuning set (Fig. 2b). These learned features were fur-
ther used to train the attention module. The attention 
module consisted of an attention backbone and a classi-
fication layer with two output neurons, one for each class 
[18]. The attention backbone assigns and optimises the 
weights for each tile-level feature vector from each WSI 
and these derived weights sum up to one in order to be 
invariant to the number of tiles in each slide. The tile-to-
slide feature aggregation was facilitated by the weighted 
average feature vectors from all image tiles in each slide 
[22]. The attention module was trained as a binary clas-
sification task to predict NHG 1 versus NHG 3 tumours 
using the cross-entropy loss. We used SGD optimiser 
with a learning rate 1e-5 and a momentum of 0.9. At each 
training epoch, we used the batch size of one single slide 
including all image tiles in it, based on our previous work 
[23].

Assignment of predicted histological grade (i.e. predGrade)
We obtained the slide-level predicted scores (i.e. 
P[class = NHG3|WSIi]) for the entire training set 
(N = 1695 WSIs) from the five-fold CV. We further opti-
mised the two thresholds θ1, θ2 on P(class = NHG3|WSIi) 
to generate a three-level predicted grade (i.e. predGrade 
1, 2, and 3). The thresholds θ1, θ2 were established 
through an exhaustive search by maximising the agree-
ment between the clinical NHG and the predicted grades 
(i.e. predGrade 1, 2, and 3) using Cohen’s Kappa score (κ). 
The thresholds were optimised on the training set using 
five-fold CV.

Assessment of model performance
Performance of predGrade was evaluated in both five-
fold CV and in the independent external test set (SCAN-
B cohort, n = 1262). In performance evaluation in the 
SCAN-B cohort, the five CV models were treated as base 

models in an ensemble model, where the five predicted 
scores of P(class = NHG3|WSIi) were aggregated using 
the median across all base-model predictions. Next, we 
applied the thresholds θ1, θ2(see above and Fig.  2c) to 
map predictions to predGrade 1, 2, and 3.

First, we assessed the agreement between the 
predGrade and the clinical NHG in the independent 
external test using confusion matrices. Since the clinical 
NHG has high inter-rater variability, we utilise patient 
outcome (recurrence-free survival (RFS)), as our primary 
evaluation metric. We compared the prognostic perfor-
mance of predGrade and the clinical NHG grade. The 
RFS defined recurrence (i.e. local or distant metastasis, 
detection of contralateral tumours) or death as the event 
outcome. Patients were followed from the initial diagno-
sis to the date of death/recurrence, emigration, or the last 
registration date, whichever occurred first. Kaplan–Meier 
(KM) curves for the predGrade and the clinical NHG on 
RFS using time since the initial diagnosis as the underly-
ing timescale were used for visualisation purposes. Dif-
ferences in survival probability among clinical NHG and 
predGrade subgroups were tested using the log-rank test. 
We assessed the associations between predGrade and 
RFS as well as clinical NHG and RFS separately by esti-
mating hazard ratios (HRs) with 95% confidence intervals 
(CIs) using the Cox proportional hazard (PH) models. 
We used the time since the initial diagnosis as the under-
lying timescale. First, we fitted univariate Cox models for 
the predGrade and clinical NHG, respectively. Next, we 
fitted multivariable Cox models additionally adjusting for 
the well-established clinicopathological factors including 
tumour size, ER status, HER2 status, lymph node status, 
and age at the diagnosis. Tumour size was dichotomized 
as ≥ 20  mm or < 20  mm. ER status was positive if the 
immunohistochemical (IHC) staining indicated the pres-
ence of more than 10% ER positively stained cells. HER2 
status was determined using IHC staining and FISH or 
SISH assay. Lymph node status denoted the presence of 
lymph node metastasis. Cases with missingness in the 
outcome or in any covariate were excluded from analyses. 
Two-sided alpha of 0.05 was used for all the statistical 
tests. Further, the c-index was computed for categori-
cal predGrade, clinical NHG, and continuous slide-level 
predGrade score. Bootstrap resampling (n = 1000) was 
used to calculate the confidence intervals (CI).

Software packages used for computer vision and statistical 
analyses
WSIs were read using the package openslide (v.3.4.1) 
[24]. Tissue masking, tiling, and colour normalisation 
steps were implemented using the packages scikit-image 
(v.0.16.2) [25], OpenCV (v.3.4.2) [26], SciPy (v.1.5.0) [27], 
pillow (v.7.2.0) [28], pandas (v.1.0.5) [29], and NumPy 
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(v.1.18.5) [30]. Further, TensorFlow (v.1.12.0) [31] was 
used to implement the pretrained invasive cancer detec-
tion model. The training, optimisation, and validation 
of the feature extractor and attention module were per-
formed using PyTorch (v.1.7.1) [32]. The hyperparameter 
optimisation of the learning rate was performed using 
the tune library [33] from the package ray (v.0.8.6) [34]. 
All the WSI preprocessing and deep learning analyses 
were performed in Python v.3.6.10. Statistical testing for 
differences in hazard ratio estimates between the grade 
models was performed using the hr.comp2 function in 
the survcomp package (v.1.48.0) in R [35]. C-index was 
computed using the concordance function in the survival 
package (v.3.5.0) in R [36], and bootstrapping estimates 
of CI were calculated using the bootstrap function in the 
sjstats package (v.0.18.2) in R [37].

Results
Model performance in the five‑fold CV of SöS‑BC‑4 training 
set
Classification performance
Classification performance (Fig. 3) of predGrade in com-
parison with clinical NHG was first assessed using CV 
(see Methods section), indicating fair agreement between 
predGrade and clinical NHG (Cohen’s κ = 0.33) [38]. 4.8% 
of clinical NHG 1 was classified as predGrade 3, and 5.3% 
of clinical NHG 3 was classified as predGrade 1. We have 
added an example of tiles from the correctly classified 
predGrade 1, 2, and 3 in (Additional file 1: Table S2).

Prognostic performance
Subsequently we evaluated the prognostic performance 
through time-to-event analysis. Figure  4 shows the KM 
curves comparing the risk stratification on RFS by clini-
cal and predGrade. We observed similar stratification 
effects by the predGrade and clinicalNHG. Patients with 
clinicalNHG 1 or predGrade 1 showed the best survival, 
while patients assigned the clinical NHG 3 or predGrade 
3 showed the worst survival (Fig. 4).

In the univariate Cox models, we observed simi-
lar effect sizes between the predGrade or clinical NHG 
and RFS (Fig.  5a and b). The predGrade 3 (HR = 3.12, 
95%CI = 1.69–5.76, p-value < 0.001) and clinicalNHG 3 
(HR = 3.19, 95% CI = 1.74–5.85, p-value < 0.001) showed 
approximately two times higher risk of an event as com-
pared to predGrade 1 and clinicalNHG 1, respectively. 
Neither HR estimates for predGrade 2 nor clinicalNHG 
2 were found to be significant (p-value < 0.05) (Fig. 5a and 
b).

In the multivariable Cox PH models, adjusting for 
tumour size, lymph node, ER, and HER2 status, the 
predGrade3 remained associated with a higher risk 
of death/recurrence (HR = 2.27, 95%CI = 1.07–4.82, 

Fig. 3 Confusion matrix shows the agreement 
between the predGrade and clinicalNHG in the five‑fold CV

Fig. 4 Kaplan–Meier (KM) curves on recurrence‑free survival from five‑fold CV in the SöS‑BC‑4 training set. a. KM curve stratified by clinical NHG 
and b. KM curve stratified by predGrade
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p-value = 0.033) (Fig. 5d). A similar association was also 
noted for the clinicalNHG 3 (HR = 2.60, 95% CI = 1.18–
5.70, p-value = 0.017) (Fig.  5c). Neither predGrade2 
nor clinicalNHG2 was found to be significantly 
(p-value < 0.05) associated with RFS (Figs.  5c and d). In 
addition, we observed a higher risk of death/recurrence 
linked to older age and tumour size equal to or larger 
than 20 mm, while the number of lymph nodes, ER sta-
tus, and HER2 status was not related to RFS (Fig. 5c and 
d).

Model performance in the independent external test set 
(SCANB cohort)
Classification performance
The classification performance, as assessed by the confu-
sion matrix (Fig.  6) and estimation of Cohen’s κ = 0.33, 
was found to be consistent with CV results.

Prognostic performance
In the independent external test set, KM curves showed 
similar risk stratification on RFS by the predGrade (log-
rank p-value = 0.00049) as compared to the clinical NHG 
(log-rank p-value = 0.0002) (Fig. 7).

In the univariate Cox PH model, we observed simi-
lar effect sizes in the associations between clinical 
NHG, predGrade, and RFS (Fig.  8a and b). Patients 

Fig. 5 Evaluation of the prognostic performance on recurrence‑free survival (RFS) in five‑fold CV in the SöS‑BC‑4 training set. a. Univariate Cox 
PH regression analysis between the clinical NHG and RFS; b. univariate Cox PH model between the predGrade and RFS; c. multivariable Cox 
PH model between the clinical NHG and RFS adjusting for age, tumour size, lymph node, ER, and HER2 status; d. multivariable Cox PH model 
between the predGrade and RFS adjusting for age, tumour size, lymph node, ER, and HER2 status

Fig. 6 Confusion matrix shows the agreement 
between the predGrade and clinical NHG in the independent 
external test set
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with clinical NHG 3 (HR = 3.58, 95% CI 1.88–6.81, 
p-value < 0.001) or predGrade3 (HR = 4.07, 95% CI 1.75–
9.47, p-value < 0.001) had three-to-four  fold increased 
risks of death/recurrence (Fig. 8a and b) as compared to 
those with clinical NHG 1 or predGrade 1. On the other 
hand, the clinical NHG 2 (HR = 2.59, 95% CI 1.36–4.92, 
p-value = 0.004) and predGrade 2 (HR = 2.52, 95% CI 

1.10–5.81, p-value = 0.030) were linked to around 2.5-
fold increased risk of death/recurrence (Fig. 8a and b).

In multivariable Cox PH analysis, adjusting for tumour 
size, lymph node, ER, and HER2 status, the associations 
between the predGrade and the clinical NHG, with RFS 
were no longer found to be statistically significant (Fig. 8c 
and d), while the effect size estimate was in the same 

Fig. 7 Kaplan–Meier (KM) curves on recurrence‑free survival stratified by clinical NHG and predGrade in the independent external test set. a. KM 
curve stratified by the clinical NHG and b. KM curve stratified by the predGrade

Fig. 8 Evaluation of the prognostic performance on recurrence‑free survival (RFS) in the independent external test set. a. univariate Cox model 
between the clinical NHG and RFS; b. univariate Cox model between the predGrade and RFS; c. multivariable Cox model between the clinical NHG 
and RFS adjusting for age, tumour size, lymph node, ER, and HER2 status; and d. multivariable Cox model between the predGrade and RFS adjusting 
for age, tumour size, lymph node, ER, and HER2 status
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direction as for the univariate analysis. In addition, we 
noted that older age at diagnosis and larger tumour size 
was linked to a higher risk of death/recurrence, while ER 
positive was related to a lower risk of death/recurrence 
(Fig.  8c and d). The number of lymph nodes and HER2 
status was not related to RFS (Fig. 8c and d).

Next, we tested for the difference in hazard ratio esti-
mates for clinical NHG 2 versus 1 and predGrade 2 
versus 1, indicating no statistically significant differ-
ence (p-value > 0.05). We also tested for the difference in 
hazard ratio estimates for clinical NHG 3 versus 1 and 
predGrade 3 versus 1, revealing no significant difference 
(p-value > 0.05). The hazard ratios in this analysis were 
calculated from the multivariate Cox PH model after 
adjusting for the established covariates.

Lastly, we evaluated the c-index of the categori-
cal predGrade and clinical NHG in the univariate Cox 
PH model. We observed the c-index of 0.62 (95% CI 
0.57–0.67) and 0.64 (95% CI 0.59 – 0.69) for predGrade 

and clinical NHG, respectively. Further, we observed 
the c-index 0.62 (95% CI 0.56 – 0.68) for the continuous 
predGrade predicted slide score.

Subgroup analysis restricting to ER (+ ve) or ER(+ ve)/
HER2(− ve) groups in the independent test set
We plotted KM curves on RFS stratified by clinical NHG 
and predGrade among ER (+ ve) patients (Fig. 9a and b) 
and ER (+ ve)/HER2(-ve) patients (Fig. 9c and d).

In the univariate Cox model restricted to ER (+ ve) 
patients, we observed increased risks of death/recur-
rence associated with clinical NHG 3 (HR = 2.63, 95% CI 
1.32–5.24, p-value = 0.006) or predGrade 3 (HR = 3.27, 
(95% CI1.37–7.82, p-value = 0.008) (Fig. 10a and b). The 
clinicalNHG 2 had a 2.42-fold increased risk of death/
recurrence, while the predGrade2 was not related to RFS 
albeit a similar point estimate HR of 2.07 (95% CI 0.86–
4.64, p-value = 0.091) (Fig.  10a and b). In the multivari-
able analysis, the association between clinical NHG and 

Fig. 9 Subgroup analysis: Kaplan–Meier (KM) curves on recurrence‑free survival (RFS) in the independent external test set within ER(+ ve) 
or ER(+ ve)/HER2( − ve) groups. a. KM stratified by clinical NHG in ER(+ ve) patients; b. KM stratified by predGrade in ER(+ ve) patients; c. KM stratified 
by clinical NHG in ER(+ ve)/HER2( − ve) patients. d. KM stratified by predGrade in ER(+ ve)/HER2(‑ve) patients
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Fig. 10 Evaluation of the prognostic performance (RFS) of predGrade on in the independent external test cohort within ER(+ ve) or ER(+ ve)/
HER2( − ve) groups. Univariate Cox PH model for a. clinical NHG and b. predGrade on RFS among ER(+ ve) patients, c. multivariable Cox PH models 
between c) clinical NHG, d. predGrade and FRS among ER(+ ve) patients adjusting for age, tumour size, and lymph node. Univariate Cox PH model 
between e. clinical NHG, f. predGrade and RFS among ER(+ ve)/HER2( − ve) patients. Multivariable Cox model between g. clinical NHG, h. predGrade 
and RFS among ER(+ ve)/HER2( − ve) patients adjusting for age, tumour size, and lymph node
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RFS as well as the association between predGrade and 
RFS diminished and was no longer statistically significant 
(Fig. 10c and d).

Among the ER(+ ve)/HER2( − ve) patients, we observed 
HR = 2.43 (95% CI 1.19–4.99, p-value = 0.015) for clinical 
NHG 3 and HR = 3.15 (95% CI 1.29–7.65, p-value = 0.011) 
for predGrade 3 (Fig. 10e and f ). The clinical NHG 2 was 
associated with the RFS (HR = 2.41, 95%: CI 1.26–4.62, 
p-value = 0.008), while the predGrade2 was not related 
to the RFS (Figs. 10e and f ). In the multivariable Cox PH 
models among ER(+ ve)/HER2( − ve) patients, neither 
clinical NHG nor predGrade was related to RFS (Fig. 10g 
and h), while older age was linked to poor RFS in the 
analysis for predGrade (Figure h).

Again, we tested for the difference in HR estimates 
between NHG and predGrade in the subgroup analyses, 
both for grade 1 versus 2 and grade 1 versus 3 and found 
that neither was significantly different (p-value > 0.05), 
indicating that the prognostic performance was similar 
between NHG and the predGrade model. Further, we 
evaluated the c-index of the categorical clinical NHG 
(0.59 (95% CI 0.55–0.64)) and predGrade (0.61 (95% CI 
0.56–0.65)) in the univariate Cox PH analysis. Lastly, we 
observed the c-index of 0.62 (95% CI 0.56–0.67) for the 
continuous predGrade predicted slide score.

Discussion
In this study, we developed a deep learning model to 
reproduce clinical NHG breast cancer patients. The pro-
posed model was first evaluated using CV, followed by 
validation in a fully independent external test set. His-
tological grading of breast tumours is routinely assessed 
in the clinical setting and remains an important prog-
nostic factor contributing to clinical decision making, 
especially for ER (+ ve)/HER2( − ve) patients. However, 
it is well known that NHG suffers from substantial inter-
assessor and inter-laboratory variability, which motivates 
the development of decision support solutions that can 
improve quality and consistency in the assessment.

Our proposed model, predGrade, exhibited a fair label 
agreement with the clinical NHG (κ = 0.33). This imper-
fect agreement is likely driven by the ground truth label-
ling noise, both during training and validation, mostly 
from the intermediate NHG 2, given the high inter-rater 
variability observed in NHG 2 [4]. However, interest-
ingly we observed similar prognostic performances 
(RFS) for predGrade compared with the clinicalNHG. 
We also noted similar prognostic performance between 
predGrade and clinical NHG when restricted to the 
clinically relevant subgroups of ER(+ ve) or ER(+ ve) and 
HER2( − ve) patients. Our results suggest that the deep 
learning-based predGrade provides similar prognostic 
performance (RFS) of the clinical NHG, which is a key 

consideration since the conventional NHG grade is pri-
marily used in clinical settings as a prognostic factor [39]. 
This indicates that deep learning-based solutions can 
provide decision support based on the same principles of 
histological grading while offering the benefits of being 
objective and consistent. The model has the potential to 
reduce inter-assessor variability between pathologists 
and systematic variability between pathology laborato-
ries, which has recently been shown to result in [7] une-
qual diagnostic quality for patients.

Previous studies have focussed on classifying NHG1 
and 2 (low-intermediate) combined versus NHG3 (high) 
[11, 12]. Wetstein et al. reported a 37% increased risk of 
recurrence associated with a high grade compared to a 
low–intermediate grade. Wang et  al. on the other hand 
demonstrated that a deep learning model optimised to 
discriminate NHG 3 versus 1 can [14] further stratify the 
intermediate NHG 2 into NHG2-low and NHG2-high, 
enabling improved prognostic stratification of the NHG 
2 group of patients.

Jaroensri et  al. mainly focussed on the development 
of the composite NHG score by developing predictive 
models for the individual subcomponent scores and vali-
dated them against the panel of pathologists [13]. Despite 
a difference in survival endpoints, we observed similar 
c-index of 0.62 in comparison with 0.60 (95% CI 0.55–
0.65) reported by Jaroensri et al. for the combined deep 
learning-based NHG grade. We believe that the NHG 
score, rather than the individual subcomponents, has a 
higher clinical relevance, at least with respect to prognos-
tic applications.

In our modelling strategy, we make some key assump-
tions. Due to the inter-observer and inter-laboratory var-
iability present in the clinical NHG with relatively higher 
variability in NHG 2, thus we decided to optimise our 
model for the classification of NHG 3 and 1 where there 
is less label noise. As stated earlier, this modelling strat-
egy is based on the assumption that the tumour grading 
exists in a continuum instead of the discrete labels at 
the morphological level with a spectrum ranging from 
low to high grade, apart from assuming more reliable 
ground truth for low and high NHG. Such variabilities 
in the ground truth labels are one of the important chal-
lenges in developing deep learning-based clinical deci-
sion support tools, especially the development of weakly 
supervised learning-based models where the label is only 
available at the WSI level. An alternative approach to the 
modelling problem would be to attempt to reduce label 
noise, which could be achieved by e.g. utilising consensus 
labels assigned by a set of assessors as performed in [13]. 
However, such attempts remain challenging due to the 
number of resources required and the shortage of pathol-
ogists available in most parts of the world.
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Conclusion
In this study we developed and validated a deep learn-
ing-based model for breast cancer histological grading, 
providing a similar three-group grade assignment as the 
well-established Nottingham Histological Grading sys-
tem. We found that despite the relatively low concord-
ance of grade labels with clinical NHG, the proposed 
model provides equivalent prognostic stratification of 
breast cancer patients. The proposed model has the 
potential to provide objective and consistent decision 
support for histological grading, reducing previously 
observed inter-assessor and systematic inter-laboratory 
variability in breast cancer histological grading, and with 
the benefit of increased equality for patients and reduced 
risk for over- and under-treatment.
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