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Abstract 

Background Neoadjuvant endocrine therapy (NET) in oestrogen receptor‑positive (ER+) /HER2‑negative (HER2‑) 
breast cancer allows real‑time evaluation of drug efficacy as well as investigation of the biological and molecular 
changes that occur after estrogenic deprivation. Clinical and pathological evaluation after NET may be used to obtain 
prognostic and predictive information of tumour response to decide adjuvant treatment. In this setting, clinical scales 
developed to evaluate response after neoadjuvant chemotherapy are not useful and there are not validated biomark‑
ers to assess response to NET beyond Ki67 levels and preoperative endocrine prognostic index score (mPEPI).

Methods In this prospective study, we extensively analysed radiological (by ultrasound scan (USS) and magnetic 
resonance imaging (MRI)) and pathological tumour response of 104 postmenopausal patients with ER+ /HER2‑ resect‑
able breast cancer, treated with NET for a mean of 7 months prior to surgery. We defined a new score, tumour cel‑
lularity size (TCS), calculated as the product of the residual tumour cellularity in the surgical specimen and the tumour 
pathological size.

Results Our results show that radiological evaluation of response to NET by both USS and MRI underestimates 
pathological tumour size (path‑TS). Tumour size [mean (range); mm] was: path‑TS 20 (0–80); radiological‑TS by USS 9 
(0–31); by MRI: 12 (0–60). Nevertheless, they support the use of MRI over USS to clinically assess radiological tumour 
response (rad‑TR) due to the statistically significant association of rad‑TR by MRI, but not USS, with Ki67 decrease 
(p = 0.002 and p = 0.3, respectively) and mPEPI score (p = 0.002 and p = 0.6, respectively). In addition, we propose 
that TCS could become a new tool to standardize response assessment to NET given its simplicity, reproducibility 
and its good correlation with existing biomarkers (such as ΔKi67, p = 0.001) and potential added value.

Conclusion Our findings shed light on the dynamics of tumour response to NET, challenge the paradigm of the abil‑
ity of NET to decrease surgical volume and point to the utility of the TCS to quantify the scattered tumour response 
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Introduction
Oestrogen receptor-positive (ER+)/human epidermal 
growth factor receptor 2-negative (HER2-) breast cancer 
(hereafter referred to as ER+ BC) represents almost 70% 
of all breast malignancies. Antiestrogenic or endocrine 
therapy is the cornerstone of ER+ BC treatment, although 
long-term resistance to this therapy (in the neoadjuvant 
or adjuvant setting) is a common event [1]. Neoadju-
vant (or preoperative) endocrine therapy (NET) results 
in pathological and clinical response rates comparable to 
those observed with neoadjuvant chemotherapy (NCT), 
although with lower toxicity and decreased pathologic 
complete response (pCR) rates [2–5]. Three pioneer clin-
ical trials (IMPACT, PROACT and P024) demonstrated 
that NET is effective in downsizing ER+ BC and facilitat-
ing breast-conserving surgery (BCS) and showed greater 
efficacy for aromatase inhibitors compared with tamox-
ifen [6–8]. As a consequence of these and other studies, 
NET, given for 4–8 months, is nowadays recommended 
by international guidelines for postmenopausal women 
presenting ER+ BC [9–11]. An important advantage of 
NET is that it allows “in vivo” evaluation of response, 
hence granting real-time examination of drug efficacy 
as well as investigation of the biological and molecular 
changes that occur after estrogenic deprivation. How-
ever, the lack of useful biomarkers of long-term efficacy 
of therapy has precluded the development of the neoad-
juvant strategy for endocrine therapies.

In the management of patients under neoadjuvant 
systemic therapy (either NET or NCT), two impor-
tant evaluations are performed. First, a preoperative 
assessment of radiological tumour response (rad-TR) 
determines the response grade and establishes the 
surgical strategy [12–14]. Next, surgical specimens 
are histopathologically evaluated to obtain prognostic 
information according to pathological tumour response 
(path-TR) scales [12, 13]. In the case of BC patients 
treated with NCT, there are well-stablished param-
eters to measure tumour response, such as RECIST 
criteria, Miller & Payne and Sataloff grading scales, and 
residual cancer burden (RCB) value [15–18]. Nowa-
days, only Preoperative Endocrine Therapy Prognostic 
Index (PEPI) score and Ki67 levels have been validated 
as prognostic markers after NET [4, 19–22]. Hence, 
tumours that show substantial down-staging after NET 

and present low Ki67 levels and PEPI score at surgery 
have an excellent long-term prognosis even without 
chemotherapy [1, 14, 19, 20]. However, they are not 
optimal and they are not routinely used due to, among 
other reasons, a lack of Ki67 measurement standardiza-
tion [23, 24]. Importantly, these two biomarkers are not 
independent as PEPI score includes Ki67 levels [21]. 
In addition, novel potential prognostic and/or predic-
tive biomarkers in the field of NET have been recently 
suggested [25]. For example, current clinical guidelines 
make contradictory recommendations about perform-
ing gene expression-based assays such as Oncotype, 
EndoPredict or PAM50 to select NCT or NET for 
patients with ER+  BC [11, 26]. Moreover, some stud-
ies have shown different response to neoadjuvant thera-
pies (mainly NCT) between HER2-Low and HER2-0 
ER+ breast tumours [27, 28].

In contrast to what happens for NCT, pCR after NET 
is a rare event and is not a useful marker of prognosis 
given its low likelihood [3–5]. In fact, previous stud-
ies suggest that ER+ BC tumours after neoadjuvant 
systemic therapy present a “diffuse cell loss” response 
at pathological level, which is characterized by a dis-
tribution of the tumour in multiple scattered foci or 
small groups of tumour cells without affecting overall 
tumour size [29]. Understanding the impact of tumour 
response to NET on long-term outcomes will help cli-
nicians to individualize adjuvant treatment for ER+ BC 
in clinical practice.

In this context, there is an urgent need for the identifi-
cation of robust, reproducible biomarkers of response to 
NET with long-term prognostic value. Ideally, these new 
biomarkers should be candidates for initial validation in 
retrospective series. In addition, the mentioned diffuse 
cell loss in ER+ BC patients treated with NET needs to be 
better characterized. In order to investigate the dynam-
ics of tumour response, we generated a prospectively col-
lected series of ER+ BC patients treated with NET. We 
characterized and compared tumour response by ultra-
sound scan (USS) and/or magnetic resonance imaging 
(MRI) with pathological tumour size (path-TS). Finally, 
we described a new biomarker with potential prognos-
tic implications, called tumour cellularity size (TCS), 
which could help to characterize the response to NET in 
ER+ BC by an estimation of the diffuse cell loss.

usually produced by endocrine therapy. In the future, these results should be validated in independent cohorts 
with associated survival data.

Keywords Neoadjuvant endocrine therapy, Aromatase inhibitors, Tumour cellularity size, Oestrogen receptor (ER)‑
positive breast cancer, Pathological and radiological tumour response, Preoperative endocrine prognostic index (PEPI) 
score, Ki67
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Methods
Study population
We analysed clinical data from a cohort of patients 
treated in our institution between 2005 and 2019. Data 
were prospectively collected and retrospectively ana-
lysed. All were postmenopausal women with histologi-
cally confirmed, untreated, invasive, operable, larger than 
10  mm and amenable for radiological follow-up, ER+ /
HER2- non-metastatic BC. Patients had to be treated for 
at least 3 months with NET prior to surgery with cura-
tive intention. Patients were treated with aromatase 
inhibitors, unless contraindicated. Informed consent was 
obtained from all patients.

Imaging and histopathological analysis
Tumour baseline assessment was performed by breast 
USS and/or MRI. Clinical response by USS was evalu-
ated after 2  months of treatment and repeated every 
2 months. MRI and/or USS were also performed before 
surgery to evaluate radiological tumour response (rad-
TR). Surgical breast specimens were evaluated by the 
pathologist to determine pathological tumour response 
(path-TR), tumour size (path-TS) and residual tumour 
cellularity (%). Clinical (assessed by MRI and USS) or 
pathological tumour size corresponds to the major diam-
eter of the tumour in millimetres (mm) and T-stage of 
the primary tumour was defined according to AJCC Can-
cer Staging Manual [30].

Immunohistochemistry analyses were performed 
in baseline formalin-fixed paraffin-embedded biop-
sies and surgical specimens to determine the expres-
sion of ER, progesterone receptor (PgR) and Ki67 levels, 
using international standards [31, 32]. ER, PgR and Ki67 
were recorded as continuous variables. Ki67 score was 
defined as the percentage of tumour cells with Ki67-
positive nuclear staining. At least 1000 tumour nuclei 
were counted per sample, according to the recommenda-
tions of Dowsett et al. [31]. The change in Ki67 (∆Ki67) 
after NET was calculated using the following equation: 
∆Ki67 = [(Ki67 (%) in surgery specimen)—(Ki67 (%) in 
baseline biopsy)]/(Ki67 (%) in baseline biopsy). ∆Ki67 
results were categorized into three groups depending on 
their magnitude of change. ∆Ki67 = − 1 means that Ki67 
changes to zero in the surgery specimen. ∆Ki67 =  > −  1 
to < 0 means that the tumour presented a decrease 
in Ki67 expression. Finally, ∆Ki67 ≥ 0 means that the 
tumour did not present any change in Ki67 expression or 
that Ki67 expression in the surgery specimen was greater 
than the one on baseline biopsy.

Rad-TR was defined using mRECIST 1.1 criteria 
[15]. According with this criteria, complete responses 
(CR) were defined as tumour disappearance and par-
tial responses (PR) were defined as the reduction of the 

tumour diameter by ≥ 30%. An increase ≥ 20% in tumour 
diameter was qualified as progressive disease (PD). The 
rest of situations were qualified as stable disease  (SD).

Path-TR was quantified using a modified Miller and 
Payne grading scale [16, 33]. In this scale, response 
grades 1 and 2 (no change or less than 30% loss of 
tumour cells, respectively) were regarded as SD. Grades 
3 and 4 (reduction in tumour cells between 30 and 90% 
and > 90%, respectively) were considered as pathologic 
PR. Grade 5 (defined as no malignant cells identifiable in 
the tumour niche) was considered pathologic CR (pCR). 
In binary analyses, path-TR was defined as loss of tumour 
cells ≥ 30% (grades 3–5) and no path-TR as < 30% (grades 
1–2).

Modified PEPI (mPEPI) score was determined on the 
basis of tumour characteristics of surgical specimen (i.e. 
tumour size, nodal involvement status and Ki67 staining), 
as previously published [21, 22]. Patients were classified 
into 3 mPEPI risk groups (I = 0, II = 1–3 and III = 4 +).

TCS, the novel score we introduce in this study, was 
calculated as the product of tumour cellularity in the sur-
gical sample (%) and tumour diameter (path-TS, in mm).

Statistical analyses
Statistical analyses were performed using GraphPad 
Prism version 9. For the descriptive statistical analy-
ses, minimum, maximum and mean values were used. 
For Gaussians distributions, paired Student’s t-test was 
used to compare differences between two groups. For 
non-Gaussian distributions, Wilcoxon matched-pairs 
or Kruskal–Wallis tests were performed. Chi-square or 
Fisher’s tests were used to determine differences between 
expected frequencies. Spearman’s r coefficient (rho) for 
analyses, were used to quantify correlations (both with a 
95% of confidence interval). P values < 0.05 were consid-
ered statistically significant. Unless otherwise specified, 
histograms represent mean values ± standard error of the 
mean (SEM).

Results
Tumour characteristics and change in tumour biomarkers 
after NET
A total of 104 patients with early ER+ /HER2- breast 
cancer were included in our study. The study popula-
tion presented a mean age at diagnosis of 69 (47–93) 
years, and the mean NET duration before surgery was 
7  months (3–39). The mean tumour size was 25  mm 
(10–90) assessed by MRI and 18 mm (7–40) by USS. The 
main administered NET drug was letrozole (n = 100), but 
some patients also received anastrozole (n = 2), tamox-
ifen (n = 1), or exemestane (n = 1). One patient was diag-
nosed with bilateral disease, and her two tumours were 
independently considered in our analyses. The principal 
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characteristics of the tumours and their surgical manage-
ment as well as the pathological changes after NET are 
summarized in Table  1. No significant decrease of his-
tological grade was observed after NET (p = 0.12). Ki67, 
ER and PgR expression was assessed in all tumours pre- 
and post-NET treatment. NET significantly decreased 
all these three parameters, being the changes in Ki67 
and PgR the most significant (both p < 0.0001, Table  1 
and Additional file 1: Figure S1). While only 13 patients 

(12%) were cN + before treatment, 26 patients (25%) were 
pN + at pathological assessment. Regarding pathologi-
cal tumour response to NET, only one case of pCR was 
recorded and most cases (72%) showed partial path-TR 
(Table 2). Most patients (81%) fell into low (I, n = 34, 35%) 
and intermediate (II, n = 45, 46%) mPEPI risk groups.

Radiological examination of tumour size after NET 
underestimates pathological tumour size
To determine which is the best radiological technique 
to predict pathological tumour size (path-TS) after 
NET, we compared tumour size measured by MRI and 
USS before and after treatment. As expected, radio-
logical tumour size (rad-TS), measured by MRI or USS, 
both at diagnosis and after NET (just before surgery), 
significantly correlated with path-TS (Fig. 1A–D). Sur-
prisingly, our results showed that path-TS correlated 
better with tumour size assessed by MRI and USS at 
diagnosis than after NET (Fig.  1A). To better visual-
ize if the radiological evaluation before surgery pre-
cisely assesses tumour size after NET, we compared 
the mean value of tumour size assessed by each radio-
logical technique, before and after NET, and by path-
TS. As shown in Fig. 1E, MRI/USS measurements after 
NET were significantly lower than path-TS and, inter-
estingly, radiological measures at diagnosis were more 
similar to path-TS than the measures after treatment. 
Actually, MRI and USS before surgery underestimated 
path-TS in 77% (76/99) and 92% (84/91) of the cases, 
respectively.

Importantly, we also found that this disagreement 
in tumour size estimation by imaging and histopatho-
logical analysis affects the concordance between radio-
logical (rad-TR) and pathological (path-TR) tumour 
response (Table  2). Complete rad-TR was observed in 
27 (by MRI) and 16 (by USS) patients while only one 
patient presented a pCR by pathological assessment. 
To better visualize these discrepancies, we plotted the 
correlation between rad- and path-TR. As shown in 
Fig. 2A, B, we found that rad-TR assessed by MRI cor-
related better with path-TR than rad-TR assessed by 
USS, although both associations were statistically sig-
nificant. Interestingly, we observed that a considerable 
number of tumours presented a complete (100%) rad-
TR after NET but presented a low path-TR (G2 or G3, 
highlighted in red in Fig. 2A, B).

Next, we evaluated the association between rad- and 
path-TR with the two most accepted prognostic mark-
ers after NET: Ki67 levels and mPEPI score [14, 21, 22]. 
As expected, pathological responders presented sig-
nificantly lower Ki67 levels at surgery and mPEPI score 
(Fig. 2C, D). Regarding rad-TR, both prognostic mark-
ers were associated with tumour response assessed by 

Table 1 Histopathological information and surgical 
management of tumours included in our series

* One patient was diagnosed with bilateral disease and her two tumours were 
independently considered in the histopathological analysis and in its surgical 
management

ªOne tumour was not evaluable for biological characteristics at surgery because 
the patient achieved a pCR

c/yp axillary node status was determined clinically and pathologically before 
and after NET, respectively. BCS breast‑conserving surgery. N/A not available

Characteristics Before NET After NET
(n = 105*) (n = 104ª)

Histological grade [n (%)]

 I 23 (22) 34 (33)

 II 78 (74) 69 (66)

 III 4 (4) 1 (1)

Histological type [n (%)]

 Ductal 86 (82) 85 (82)

 Lobular 10 (10) 12 (12)

 Other special type 9 (8) 7 (6)

c/yp axillary node status [n (%)]

 Negative 91 (87) 72 (69)

 Positive 13 (12) 26 (25)

 N/A 1 (1) 7 (6)

Positive cells (%) [mean (range)]

 Ki67 20 (3–60) 9 (0–75)

 Oestrogen receptor 94 (20–100) 90 (0–99)

 Progesterone receptor 63 (1–100) 15 (0–99)

Breast surgery performed [n (%)]*

 BCS 95 (90)

 Modified radical mastectomy 10 (10)

Table 2 Radiological (rad‑) and pathological (path‑) tumour 
response (TR) after NET

Rad‑TR was evaluated by mRECIST 1.1 criteria, and path‑TR was measured using 
a modified Miller and Payne grading scale. N/A not available

Rad-TR type [n (%)] MRI USS Path-TR [n (%)]

N/A 7 (7) 14 (13) 0 (0)

Complete 27 (26) 16 (15) 1 (1)

Partial 40 (38) 49 (47) 76 (72)

Stable disease 29 (27) 24 (23) 28 (27)

Progressive disease 2 (2) 2 (2) 0 (0)
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Fig. 1 Comparison between pathological and radiological tumour size before and after neoadjuvant endocrine treatment (NET). (A–D) 
Correlation of pathological tumour size (path‑TS) with MRI (A and C) and USS (B and D) measurements at diagnosis (A–B) and after NET (C–D). 
Spearman correlation coefficients (rho) and p values are shown. (E) Comparison of radiological tumour size (assessed by MRI and USS at diagnosis 
and after NET) with path‑TS. p values were calculated using Kruskal–Wallis test
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MRI (Fig. 2E, F), but, in the case of USS, there was not 
association between tumour response and Ki67 and 
mPEPI score (Fig. 2G, H).

In summary, our data support that radiological evalu-
ation of tumour size after NET underestimates Path-TS 
and indicate that MRI could be more reliable than USS to 
assess response to NET.

Tumour cellularity size is a new parameter to standardize 
the assessment of residual tumour content after NET
Diffuse cell loss has been observed as a common pat-
tern of tumour response after neoadjuvant therapies 
in ER+ (luminal) tumours [29]. In an attempt to better 
assess tumour response after NET, we propose a novel 
parameter called tumour cellularity size (TCS). TCS is 
the product of tumour cellularity (%) and tumour diam-
eter (path-TS, in mm), which are routinely assessed in the 
clinical practice, and estimates the volume of remaining 
cells in the tumour bed after NET. First, we evaluated 
how TCS relates to radiological tumour size and response 
(Fig. 3). As seen in Fig. 3A, TCS values were much lower 
than path-TS and more similar to MRI or USS measures 
after NET compared to rad-TS at diagnosis or path-TS. 
We then analysed how TCS associates with radiologi-
cal and pathological response (Fig.  3B–D). Our results 
showed that TCS inversely correlated with path-TR and 
with MRI rad-TR (Fig.  3B, C). However, the associa-
tion between TCS and rad-TR determined by USS was 
not significant (Fig.  3D), in line with previous results 
supporting that MRI may be more adequate than USS 
to quantify response to NET. Taken together, our data 
indicate that TCS can quantify the tumour “diffuse cell 
loss’’ response observed in ER+ BC tumours after NET, 
and may capture better the biological response of those 
tumours and explain why the radiological pre-operative 
assessment of tumour size underestimates the path-TS.

In order to further evaluate if TCS can be used as a 
biomarker of response and prognosis for patients under-
going NET, we evaluated its association with changes 
in Ki67 (∆Ki67) (Fig.  3E–G) and Ki67 levels at surgery 
(Additional file  1: Figure S2), well-established prog-
nostic markers after NET. We observed that ∆Ki67 and 
Ki67 expression at surgery correlated better with TCS 

than with tumour cellularity or path-TS (Fig. 3E–G, and 
Additional file 1: Figure S2). Consequently, tumours with 
high residual Ki67 expression (∆Ki67 > 0 and high Ki67 
expression at surgery) also present a high TCS, suggest-
ing that TCS could be a promising biomarker of response 
to NET.

Finally, to identify an initial cut-off value for which 
TCS can divide patients responding to NET from no 
responder patients, we analysed the relationship of TCS 
quartiles with Ki67 (Fig.  4 and Additional file  1: Fig-
ure S3). As mentioned before, TCS is positively corre-
lated with Ki67 at surgery and ∆Ki67 (Additional file  1: 
Figure S3). Tumours with TCS < 2.5  mm (Q1) showed 
significantly lower Ki67 levels at surgery and ∆Ki67 com-
pared with tumours with TCS ≥ 2.5 mm (Q2, Q3 and Q4, 
Fig.  4), suggesting that a TCS value < 2.5  mm could be 
used as a good cut-off value to identify patients respond-
ing to NET.

Discussion
There are different reasons why neoadjuvant endocrine 
therapy (NET) is a very promising and attractive thera-
peutic strategy for ER+ BC patients. First, it is less toxic 
than neoadjuvant chemotherapy albeit resulting in simi-
lar pathological and clinical response rates and, indeed, 
it is already recommended by international guidelines 
for postmenopausal women [3]. Finally, it represents an 
ideal scenario for clinical research as it allows real time 
investigation of drug efficacy and of the molecular and 
biological changes in tumours after endocrine treatment. 
This may lead to the identification of novel biomarkers of 
response and new therapeutic strategies. However, NET 
remains an underused tool for ER+ BC because monitor-
ing response is challenging, among other reasons [3, 34]. 
Many NET clinical trials use the radiological response 
rate (by pre-operative evaluation with USS, mammogra-
phy or MRI using RECIST 1.1 criteria) and improvement 
of BCS rates as a primary objective to demonstrate effec-
tiveness [3, 10, 13, 14]. However, our results, obtained 
from a prospectively collected series of 104 ER+ BC 
patients treated with NET, prove that the pre-operative 
radiological evaluation after NET underestimates path-
TS. Importantly, our cohort is similar to others previously 

(See figure on next page.)
Fig. 2 Evaluation of radiological tumour response (rad‑TR) after NET by comparison with pathological tumour response (path‑TR) and prognostic 
biomarkers for NET. (A–B) Rad‑TR was assessed by MRI (A) and USS (B) and evaluated by mRECIST 1.1 criteria. Path‑TR was evaluated using 
a modified Miller and Payne grading scale. In the upper square, tumours presenting complete response by MRI (A) or USS (B), but partial response 
(G2‑G3) by path‑TR, are highlighted in red. (C, E and G) Analysis of Ki67 levels at surgery in tumours classified according to their path‑TR (C) 
and rad‑TR by MRI (E) or USS (G). (D, F and H) Contingency analyses of the association between modified PEPI (mPEPI) score and path‑TR (D) 
and rad‑TR by MRI (F) or USS (H). p values were calculated using Kruskal–Wallis test (A–C, E, G) or Chi‑square test (D, F and H). CR: complete 
response, PR: partial response, SD: stable disease, and PD: progression disease
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Fig. 2 (See legend on previous page.)
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Fig. 3 Tumour cellularity size (TCS) as a new parameter to measure response to NET. (A) Comparison of radiological tumour size (assessed by MRI 
and USS, before and after NET) with TCS. The dotted line indicates the mean of path‑TS obtained for those tumours. (B–D) Association between TCS 
and pathological (path‑TR) (B) and radiological response assessed by MRI (C) or USS (D). (E–G) Association between TCS (E), tumour cellularity (F) 
and pathological tumour size (path‑TS) (G) with changes in Ki67 (∆Ki67) after NET. p values were calculated using Kruskal–Wallis test
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analysed in terms of response rates [10, 12, 13]. Previous 
reports have also shown that radiological and clinical 
evaluation after NET underestimate the lesion size [12], 
although Reis and cols found this difference negligible 
[35]. Clinically, these discrepancies between radiologi-
cal and pathological responses may have strong surgical 
implications for the definition of lesion area and our data 
suggest that the radiological evaluation of tumour size 
might not be the most precise way to plan the resection 
area. In fact, the AJCC recommends that imaging find-
ings after NET, NCT and radiotherapy are not considered 
elements of initial clinical staging [30].

In addition, our data show that radiological com-
plete responses almost never parallel pCR. In our series, 
26% and 15% of patients showed complete radiological 
response by MRI and USS, respectively, but only 1 patient 
achieved pCR. In fact, pCR after NET is a rare event 
and only occurs in less than 1% of the cases [3]. Usually, 
residual disease is found even in very good responder 
tumours, in the form of microscopically scattered resid-
ual cancer nests in the tumour bed [35]. This scattered or 
diffuse cell loss response is also observed after neoadju-
vant chemotherapy in ER+ tumours [29].

While pathological assessment considers the maximum 
area occupied by the tumour and does not capture this 

scattered response, radiological evaluation after NET 
may reflect the diffuse cell loss response. This could 
explain why rad-TS after NET did not reflect path-TS in 
the surgery specimens in our cohort. Moreover, it may 
highlight the importance of further research to clarify the 
paradigm of NET as a tool to decrease the surgical vol-
ume for ER+ BC, at least in cohorts composed of small 
and low-risk tumours, similar to the one that we analysed 
in this manuscript. The difference between radiologi-
cal and pathological evaluation of neoadjuvant systemic 
treatment (NST) is less frequently observed in triple-
negative and non-luminal HER2+ tumours, which tend 
to present a shrinkage or concentric response (also called 
tumour collapse) to NST [29].

Nevertheless, we should also take into consideration 
that the complete response assessed by MRI may capture 
biological events with potential prognostic/predictive 
value, including normalization of tumour vessels. Hence, 
the event of CR by MRI, even without pCR, may define a 
prognostic category that deserves further study.

Despite the discrepancies between radiological and 
pathological evaluation of tumour response to NET, clin-
ical and radiological monitoring of tumour response dur-
ing the course of NET is necessary to early detect disease 
progression. Our data indicate that MRI is preferable 

Fig. 4 Identification of a tumour cellularity size (TCS) cut‑off value to discriminate patients according to their response to NET. (A–B) Ki67 levels 
at surgery (A) and ∆Ki67 (B) in tumours with low (quartile 1, Q1) versus high (Q2, Q3 and Q4) TCS. p values were calculated using Mann Whitney test
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than USS to assess response to NET, as (1) path-TR cor-
related better with rad-TR assessed by MRI than by USS 
and (2) MRI rad-TR was significantly associated with 
reduction of Ki67 in the surgical specimen and lower 
mPEPI score, the two most accepted prognostic mark-
ers after NET [14, 21, 22]. This association was not sta-
tistically significant in the case of USS. Our results are 
in agreement with previous reports supporting the use 
of MRI as the most accurate tool among other methods 
(clinical examination, USS and mammography) to assess 
tumour response to NST in breast cancer [3, 36].

As mentioned above, the diffuse cell loss response 
observed in ER+ tumours as a response to NST repre-
sents a challenge to evaluate tumour response to NET. 
We hypothesize that the parameter tumour cellularity 
size (TCS), presented herein, can be used to assess the 
scattered response to NET as it estimates the multiple 
scattered foci of tumour cells in the tumour niche. TCS is 
the product of tumour cellularity (%) and tumour diam-
eter (path-TS, in mm) in the post-treatment surgical 
sample. We found that TCS significantly associated with 
rad-TR evaluated with MRI. As previously discussed, 
only PEPI score and Ki67 expression under treatment 
are validated prognostic markers for NET [4, 19, 22]. 
Importantly, TCS correlated better with ∆Ki67 than the 
percentage of tumour cellularity in the post-treatment 
sample and the path-TS. This may indicate that reduc-
tion in Ki67 expression is related to the tumour cellu-
larity content even when the path-TS does not change 
after NET. The association between TCS and mPEPI 
score could not be evaluated as they are not independent 
variables since both include path-TS in their calculation 
[21]. Of note, in the case of NCT, residual cancer burden 
(RCB) is a good parameter to evaluate prognosis [18]. 
Nevertheless, this parameter may not be useful to assess 
response to NET in early ER+ BC cohorts as ours, since 
83% of our patients clustered in class II, hindering further 
analyses. RCB, in contrast to TCS, includes nodal status 
as a parameter and this is a clear disadvantage for its use 
in NET cohorts similar to the one presented in this man-
uscript, as 87% of our patients presented negative c/yp 
axillary node status (Table 1).

Although this study sheds light on important points 
related to NET administration that hinder clinical 
evaluation of this therapy, it also has some limitations 
that should be addressed in the future: (i) recent studies 
support the strong prognostic value of Ki67 values after 
2–4 weeks of NET [20], but biopsies after 2–4 weeks of 
NET were not available in our study, so we could not 
assess the association between Ki67 at this time point 
with tumour response; (ii) due to the characteristics of 
our cohort (small and operable tumours and majority 

of patients with low-risk and no candidates for mastec-
tomy), we cannot properly evaluate if NET increases 
BCS rates, as described by others [6, 7]; (iii) our results 
should be validated in independent cohorts of ER+ BC 
with similar characteristics from different hospitals to 
discard biased results (e.g. the experience of each radi-
ological facility may affect the precision of MRI and 
USS measurements); (iv) the power of TCS as a new 
biomarker to predict response to NET should be vali-
dated in independent cohorts with associated survival 
data.

Conclusions
In summary, our results shed light on two clinically rel-
evant and unanswered questions in the context of NET 
highlighted by Sella and cols [3]. One of them is which 
is the optimal imaging technique to pre-surgically evalu-
ate residual disease after NET. Our data support the use 
of MRI over USS, but also prove that both imaging tech-
niques underestimate pathological tumour size. As men-
tioned, this points to careful consideration of clinical and 
radiological TR to define the surgical resection tumour 
area and challenge the paradigm of the reduction of 
surgical volume by NET given that the initial radiologi-
cal assessment seems to be the best value to define the 
tumour area even after therapy. The second unanswered 
question is the need of novel biomarkers to assess patho-
logical response to NET. We propose a new biomarker 
called tumour cellularity size (TCS) that could be a 
promising candidate to use in combination with changes 
in Ki67.
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