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Abstract 

Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-
negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy 
(NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment 
in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-
step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole 
slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response.

Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model 
development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated 
through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy 
for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used 
to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a prob-
ability profile during testing. The predicted histology classes were used to generate a histology classification map 
of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained 
with features derived from paired histology classification maps. The top graph-based features capturing the relevant 
spatial information across the different histological classes were provided to the radial basis function kernel support 
vector machine (rbfSVM) classifier for NAC treatment response prediction.

Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, 
while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model 
development cohort. The model was validated with an independent cohort with tile histology validation accuracy 
of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response pre-
dictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid 
giant cancer cells for RD.
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Introduction
Triple-negative breast cancer (TNBC) is an aggressive 
breast cancer subtype that lacks expression of estro-
gen, progesterone, and human epidermal growth fac-
tor 2 receptors [1]. TNBC accounts for 15–20% of all 
breast cancers, affecting nearly half a million women 
in the USA each year [2, 3]. The 5-year survival rate of 
TNBC patients is 15% lower than that of patients with 
other breast cancer subtypes [1]. At the time of diagnosis, 
TNBCs tend to have a more advanced histologic grade 
and larger size compared to hormone-positive breast 
cancers [4]. TNBCs also have higher recurrence and 
metastasis rates and typically metastasize to the brain, 
lung, and liver [5, 6]. No targeted or endocrine therapy 
is available for TNBC, and neoadjuvant chemotherapy 
(NAC) is the standard of care. NAC involves the use of 
chemotherapy prior to surgery to reduce tumor size, 
downgrade tumors amenable to resection, and improve 
long-term clinical outcomes. The primary endpoint of 
NAC is a pathological complete response (pCR), defined 
as the absence of residual invasive disease (RD) in the 
breast and axilla.

pCR is an important predictor of disease-free sur-
vival and overall survival in patients with TNBC [7]. 
Only 30–40% of TNBC patients achieve pCR with con-
ventional NAC; the rest (~ 70%) either do not respond 
or respond partially to NAC. Non-responders and par-
tial responders can be spared treatment side effects and 
offered alternative treatment regimens (e.g., a combina-
tion of NAC and immunotherapy) to improve outcomes 
and decrease morbidity [8–10]. More recently, immuno-
therapy has shown success in TNBC management, and 
the FDA has approved pembrolizumab for use in com-
bination with NAC in high-risk patients with early-stage 
TNBC [11].

Although the mechanisms underlying chemoresist-
ance in TNBCs remain elusive, the marked inter- and 
intratumoral heterogeneity in TNBCs may contribute to 
variability in NAC response. Currently, there is a lack of 
multi-modal biomarkers that can stratify TNBC patients 
into NAC responders, partial or non-responders, hinder-
ing personalized approaches for TNBC management. 
Furthermore, there is limited information on the robust-
ness and accuracy of current biomarkers, e.g., Ki67, 
pH3, tumor-infiltrating lymphocytes (TILs), and histo-
logical features in predicting NAC treatment response 

individually or in combination. Traditional staining tech-
niques provide limited information about the immune 
landscape (e.g., type of TILs). The low reproducibility 
and objectivity of traditional scoring methods also impair 
the clinical adoption of these markers. TNBCs are het-
erogeneous, and their tumor microenvironment (TME) 
represents a complex ecosystem of cellular components, 
such as tumor, stromal, and immune cells. Communica-
tion between TME components and their spatial rela-
tionships affect cancer progression, treatment response, 
and disease outcomes [12, 13]. Studies have shown that 
the histomorphological components of the TME, such 
as a tumor, microvessels (MVD), polyploid giant cancer 
cells (PGCCs), immune cells, and necrotic areas, can help 
predict NAC response in TNBC [14]. Advances in com-
puting, imaging, and pathology have created new oppor-
tunities to explore the relationships between histology, 
molecular events, and clinical outcomes to help predict 
NAC response in patients with TNBC [15].

Manual histomorphological characterizations of hema-
toxylin and eosin (H&E)-stained tissues is time-consum-
ing and prone to inter- and intra-observer variability 
and fails to capture the TME spatial architecture, limit-
ing their clinical value. Machine learning (ML) can more 
accurately and efficiently characterize the TME [16–18]. 
ML outperforms humans in terms of accuracy and speed 
and can identify novel predictive features and spatial pat-
terns beyond human recognition [16–18]. The aim of this 
study was to develop an ML-based model to effectively 
predict NAC response (pCR or RD) in TNBC patients 
using spatial histological features from whole slide 
images (WSIs) of H&E-stained biopsy tissue sections.

Methods
Study population
H&E-stained pre-NAC core needle biopsies from treat-
ment-naïve patients with TNBC were acquired from the 
Decatur Hospital, Georgia, USA, and the University of 
Galway, Ireland. The Decatur cohort was used as a dis-
covery cohort for model development, and the Galway 
cohort was used as a validation cohort for the developed 
model. Patient samples with little to no tissue area, stain-
ing issues, or plating artifacts were excluded from the 
analysis. After this screening process, the final sample 
sizes of the model development and validation cohorts 
for prediction analyses were 85 and 79, respectively [19]. 

Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict 
NAC response in TNBC patients and may help guide patient selection for NAC treatment.

Keywords Triple-negative breast cancer, Neoadjuvant chemotherapy, Machine learning, Digital image analysis, 
Feature engineering
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Patient clinical information of the Emory and Galway 
cohorts is presented in Table 1.

Tumor slide selection and annotation
H&E-stained slides were scanned by a slide scan-
ner (Hamamatsu NanoZoomer 2.0-HT C9600-13) 
at 40 × magnification (0.23  μm/pixel). All WSIs were 
reviewed and annotated by board-certified pathologists 
at maximum resolution with an open-source image pro-
cessing software (QuPath, ver. 0.1.2) (Fig.  1A). A total 
of 16 histology labels were annotated, including tumor, 
stroma, adipocytes, PGCC, normal tissue, stromaTIL 
(sTIL), blood vessels, benign tumor, MVD, tertiaryTIL 
(teTIL), tumorTIL (tTIL), in situ carcinoma, hemorrhage, 
necrosis, apocrine change, and mucinous change. teTILs 
are TILs close to tertiary lymphoid structures [20]. Each 
WSI background was labeled separately. Coordinates and 

histology class labels of tissue region contours were saved 
and preprocessed (Figs. 1A, 2B).

Tile‑level preprocessing
Before model training, representative histology regions 
in WSIs were annotated with contours for each histol-
ogy class. For each contour, a bounding box was created 
within the ground-truth area to extract the annotated 
tissue region. A sliding window of size 224 × 224 pixels 
was used to partition each WSI into image tiles. Only 
tiles overlapping the annotated areas by at least 90% were 
retained  (Fig.  1C). The spatial containment query was 
invoked to identify the histology class for each tile. All 
image tiles were normalized by the stain color prior to 
model development [21]. Additionally, the image channel 
associated with the hematoxylin stain was separated from 
each color image tile by color deconvolution (Fig.  1C) 
[22].

Tile‑level histology feature extraction and classification
Tile-level histology features were derived from tissue 
tiles of different histology classes. After the preproc-
essing step, 468,043 tiles were produced from WSIs of 
model development cohort. The tile histology classifica-
tion performance was evaluated by a stratified eightfold 
cross-validation strategy [23–25]. Additionally, an inde-
pendent validation set was established with all tiles from 
the validation cohort. We extracted 80 tile-level features 
from each tile by six image texture extraction methods: 
gray-level co-occurrence matrix (GLCM; Method S1A), 
Gabor filter (Method S1B), local binary patterns (LBP; 
Method S1C), Tamura (Method S1D), lower-order his-
togram (Method S1E), and higher-order histogram 
(Method S1E) [26–34]. These 80 features were further 
reduced by excluding features that had 0, not applicable 
(NA), or repetitive values. We reduced the total num-
ber of texture features to 55 by exclusion criteria (Addi-
tional file 1: Table S1). Four ML classifiers were used to 
classify image tiles by the resulting feature set, includ-
ing 1-nearest neighbor (1NN), linear support vector 
machine (linSVM), radial basis function SVM (rbfSVM), 
and ensemble tree (ensembleTree) with the RUSBoost 
method [35–37]. For model development and validation, 
the eightfold cross-validation mechanism was used. Each 
time, seven folds of data were used for training while the 
remaining one fold was used as the testing set (Fig. 1E). 
The stratified eightfold cross-validation method ensured 
that each data fold contained representative samples 
from each class and reliably assessed the tile histology 
class prediction performance. For each testing image tile, 
a trained classifier produced 16 probability values, one 
for each histology class of interest. Using the predicted 
tile histology class labels and tile spatial coordinates, we 

Table 1 Clinical information of the Emory Hospital and Galway 
cohorts

NA Non-available

Emory hospital 
dataset (n = 85)

Galway 
dataset 
(n = 79)

Age

< 55 years old 37 47

=  > 55 years old 48 31

NA 0 1

Grade

1 3 0

2 18 21

3 66 58

Tubule formation (T)

1 1 0

2 3 5

3 52 74

NA 29 0

Nuclear pleomorphism (P)

1 2 0

2 7 4

3 47 75

NA 29 0

Mitotic count (M)

1 6 21

2 16 28

3 34 30

NA 29 0

Vital status

Alive 53 69

Dead 32 9

NA 0 1
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assembled tile-level histology class labels spatially and 
produced tile-level histology classification maps for each 
patient (Fig. 2). Each histology class was represented by 
a unique color in the classification maps, enabling the 
visualization of TME histology component distributions 
within a tissue context (Fig. 1F).

Spatial TME feature extraction and NAC response 
prediction
The leave-one-out cross-validation (LOO-CV) method 
was used to evaluate the patient-level NAC response 
prediction performance [38, 39]. Similar to the tile-
level histology class classification step, the model 
development and validation cohorts were used for 
model development and validation, respectively. As 
tumor cells interact closely with immune cells, stroma, 
PGCCs, and adipocytes in the TME [40–45], histology 
classification maps were generated for each patient. 
To better model the spatial relationships of these his-
tology components in biological systems [46–53], we 
created TME graphs to characterize tissue TME states 

and the spatial interactions of tissue regions of paired 
histology classes. For each pair of histology classes 
(e.g., tumor and PGCC maps), a TME graph was con-
structed from the corresponding tile-level histology 
maps. A simple graph G = (V ,E) is undirected and 
unweighted, with V as the graph node set and E as the 
graph edge set [46, 49]. Each tile cluster was deter-
mined as a spatially connected tile component, with all 
connected tiles sharing the same histology class label. 
The centroids of the resulting tile clusters were used 
as nodes in a graph [47]. A graph edge between a pair 
of nodes u and v , i.e., edge(u, v) was established using 
the Euclidean distance for a given pair of node histol-
ogy classes. In this way, the spatial histology class dis-
tribution was represented by a TME graph structure 
[46]. Next, a set of TME features was extracted from 
each TME graph. In total, 20 graph features related 
to texture feature averages, local node configuration, 
and global graph connectivity were produced for each 
patient (Additional file  1: Table  S2) [47]. Specifically, 
the texture feature averages were derived from the 

Fig. 1 Overall schema of the developed NAC response prediction pipeline. The tile-level histology classification module (first step) consists of A 
training WSI annotation; B definition of histology classes of interest; C tile preprocessing; D feature extraction and selection; E classifier training, 
testing, and validation; and F generation of histology classification map. The patient-level NAC response prediction module (second step) consists 
of G graph node identification; H TME spatial descriptor computation; I graph construction and graph feature selection; J machine learning model 
training, testing, and validation; and K generation of an attention map with highlighted tissue regions with full feature set. Abbreviations: FE, feature 
extraction; sTILs, stromal TILs; tTILs, tumor TILs; Feat, feature; MVD, microvessel; PGCC, polyploid giant cancer cell
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tile-level feature set (Method S2A). Local node con-
figuration features were used to characterize the local 
neighborhood information (Method S2B), while graph 
connectivity features represented the global graph 
structures (Method S2C).

For an optimal prediction performance, we retained 
the top eight TME graph features using the impor-
tance weight method. The importance weight of graph 
features was determined using the ReliefF algorithm, a 
filter-method approach designed to solve classification 
problems with discrete or numerical features [54–57]. 
A feature has a lower importance weight if a feature 
value difference is observed in a neighboring instance 
pair with the same histology class (i.e., a ‘hit’). By con-
trast, a feature presents a higher importance weight if 
a feature value difference is observed in a neighbor-
ing instance pair with different histology classes (i.e., 
a ‘miss’). The top eight TME graph features ranked 
by importance weights were retained for patient-level 
NAC response prediction [58–66].

Four ML classifiers, including 1NN, linSVM, rbf-
SVM, and ensemble tree with the RUSBoost method, 
were used for patient-level NAC response prediction. 
Each patient was represented by the top eight TME 
graph-derived features associated with histology class 
pairs. Each classifier produced two NAC response class 
probability values, one for pCR and the other for RD. A 
patient was predicted to belong to the NAC response 
class associated with a larger class probability.

Statistical analysis
Statistical analysis was performed by Python (Python 
Software Foundation, https:// www. python. org/), MAT-
LAB 2020a (Natick, MA, USA), and R (R Foundation for 
Statistical Computing, Vienna, Austria, http:// www.R- 
proje ct. org/). The ReliefF importance weights were used 
to assess the significance of the selected TME graph fea-
tures [54–56, 67, 68]. The resulting prediction perfor-
mance was represented by a confusion matrix. The NAC 
response class pCR and RD were considered positive and 
negative groups, respectively. A false-positive (FP) was a 
RD case incorrectly predicted as pCR, while a false-neg-
ative (FN) case was a pCR case incorrectly predicted as 
RD. Multiple evaluation metrics were computed, includ-
ing accuracy, sensitivity (i.e. Recall), specificity, precision, 
and F1-Score. The tile-level histology classifier was evalu-
ated by the stratified k-fold cross-validation (k = 8), while 
the patient-level NAC response prediction was assessed 
by the LOO-CV.

Results
ML classifier provides accurate tile‑level histology 
classification in H&E‑stained WSIs
Our results suggest that the 16 histology classes of inter-
est were well differentiated by 55 tile texture features 
for the model development cohort (Additional file  1: 
Table  S1). With the stratified eightfold cross-validation 
strategy, we used onefold of image tiles to train the clas-
sifier and test it with the remaining seven folds in each 

Fig. 2 Representative image tiles of distinct histological classes and a tile-level histology classification map. A Typical examples of image tiles 
(224 × 224) capturing stroma, tTILs, benign tissue, and vessels are presented. B A histology classification map is presented to visualize the spatial 
organization of TME components related to stroma (green), benign tumor (blue), tTILs (purple), and blood vessels (red)

https://www.python.org/
http://www.R-project.org/
http://www.R-project.org/
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round. The average training accuracies of tile-level his-
tology classification by 1NN, linSVM, and ensemble 
tree were 63.86%, 61.33%, and 80.08%, respectively. Of 
the four classifiers that we trained and tested, the best 
performance was achieved by the rbfSVM with an aver-
age training and testing accuracy of 87.16% and 86.72%, 
respectively (Fig. 3). The individual histology class aver-
age testing accuracy ranged from 72.51 to 91.18%. Addi-
tionally, the classifier reached an average recall from 
75.11 to 92.97%, an average precision from 62.47 to 
91.28%, and an average F1-score from 70.21 to 92.81% 
for all histology classes on the testing dataset (Fig. 4). It 
was noticed that the rbfSVM classifier was good at rec-
ognizing classes such as stroma, tumor and adipocytes, 
but weak at recognizing apocrine or mucinous change. 
Detailed classification results with Emory cohort are pro-
vided in Additional file 1: Figures S5–S7.

When the best tile-level histology classifier (rbf-SVM), 
trained using the model development cohort, was applied 
to the validation cohort, an average validation accuracy 
of 83.59% was achieved (Additional file  1: Fig. S1). The 

validation accuracy for individual histology classes in the 
validation cohort ranged from 69.74 to 87.88%. Addi-
tionally, the classifier reached an average recall ranging 
from 72.0 to 90.32%, an average precision from 81.43 to 
84.19%, and an average F1-score from 76.11 to 86.92% 
for all histology classes (Additional file  1: Fig. S2). The 
true histology class, the predicted histology class, and 
the image tile spatial coordinates with respect to each 
WSI were recorded for each tile. Histology classification 
maps were generated for visualizing spatial distribution 
of histological classes. Each histology class was assigned 
a unique color, and the predicted histology class results 
were spatially assembled by the image tile spatial order 
(Additional file 1: Fig. S3). Detailed classification results 
with Galway cohort can be found in Additional file  1: 
Figures S8–S10.

Spatial TME features of paired histology classes predict 
NAC response
Using the importance weights from the ReliefF algorithm, 
we ranked all TME features from paired histology classes. 

Fig. 3 Testing tile-level histology classification performance in the model development cohort. Confusion matrix showing the aggregated 
performance of the rbfSVM model for tile-level histology class prediction (i.e., 0, stroma; 1, tumor; 2, tertiary TILs; 3, stroma TILs; 4, normal tissue; 
5, PGCCs; 6, blood vessels; 7, necrosis; 8, microvessel; 9, benign tumor; 10, tumor TILs; 11, in situ carcinoma; 12, hemorrhage; 13, adipocytes; 14, 
apocrine change; 15 mucinous change; and 16, background). Abbreviations: 1NN, 1-nearest neighbor; linSVM, linear support vector machine SVM; 
PGCC: polyploid giant cancer cells; rbfSVM, radial basis function SVM
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For each histology class pair, we computed 20 TME fea-
tures that were related to texture feature averages using 
a random geometric construct, local node-based features 
using a spectral construct, and global graph-based fea-
tures using a minimum spanning tree construct (Addi-
tional file 1: Table S2). The top eight histology pairs are 
presented in Fig.  5. For example, the histological class 
pair of tumors and tTILs with the largest importance 
weight is known to be strongly associated with pCR. In 
contrast, the histological class pair of microvessel density 
and PGCCs strongly correlate with RD. These results are 
in line with previously published studies [58–66].

With each TNBC patient represented by selected TME 
features, we trained and tested the classifier for NAC 
response prediction using LOO-CV strategy. The pre-
diction accuracies by 1NN, linSVM, and ensemble tree 
were 72.90%, 62.43%, and 70.61%, respectively. Similar 
to the tile-level histology classification, rbfSVM achieved 
the best NAC response prediction at the patient level 
with a prediction accuracy of 83.53%. Out of 51 cases, 
42 were correctly predicted as pCR. Twenty-nine out 
of 34 patients were correctly predicted as RD (Fig.  6A). 
The FP and FN groups included five and nine misclas-
sified patients, respectively, resulting in a specificity of 
85.29% and sensitivity of 82.35% (Fig.  6A). Additionally, 
the receiver operating characteristic (ROC) curve of the 

best-performing NAC prediction pipeline is presented in 
Fig. 6B with area under the curve (AUC) reaching 0.83. 
Detailed prediction performance with the Emory cohort 
is presented in Table 2.

The top eight graph-derived features capture histologi-
cal information from the TME that is critical for NAC 

Fig. 4 Testing tile-level histology classification performance of the rbfSVM classifier with the Emory Hospital development cohort. Each 
bar represents the weighted average of tiles and their predicted probabilities during testing for a histology class. Specificity (green) measures 
how often the rbfSVM classifier correctly predicted true negatives. AUC (blue) reflects the model’s ability to distinguish between positive 
and negative classes. Accuracy (yellow) indicates the proportion of correct predictions out of total predictions. F1-score (gray) presents a balanced 
view of rbfSVM classifier performance. Sensitivity (orange) suggests how often the rbfSVM classifier correctly identifies positive instances. Precision 
(blue) indicates how often the rbfSVM classifier correctly predicts true positives. Error bars represent the 95% confidence interval in each case

Fig. 5 TME graph feature selection by ReliefF. TME graph 
features histology class pairs sorted by their importance weights 
from the ReliefF algorithm in the model development cohort. 
Abbreviations: TF, Texture Feature; sTILs, stromal TILs; tTILs, tumor TILs; 
PGCCs, polyploid giant cancer cells; GLCM, gray-level co-occurrence 
matrix
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response prediction. Additional file  1: Figure S4 high-
lights representative tissue regions from where image 
tiles of the associated paired histology classes were 
derived for TME graph nodes. The resulting attention 
maps are tissue areas with high discriminating values for 
NAC response prediction, i.e., pCR vs RD (Additional 
file 1: Fig. S4).

Validating the NAC response prediction performance 
in an independent cohort
We validated the prediction performance of the pipeline 
in an independent cohort consisting of 79 WSIs. Using 
the same image quality checks and preprocessing steps, 
we analyzed each WSI using the previously trained clas-
sifiers. The positive and negative group included 41 and 
38 patients, respectively. Our prediction method cor-
rectly predicted 33 and 31 patients from the positive and 
negative groups, respectively, with a prediction accuracy 
of 81.01%. The FP and FN groups included seven and 
eight misclassified patients, respectively, resulting in a 
specificity of 81.58% and sensitivity of 80.49% (Fig. 7A). 
Additionally, the ROC curve of the best NAC prediction 

pipeline is presented in Fig. 7B, with AUC reaching 0.83. 
Detailed prediction performance with the Galway cohort 
is presented in Table 3.

Discussion
Women with TNBC exhibit significantly worse 5-year 
survival rates than those with non-TNBC, regardless of 
the tumor stage at diagnosis [69]. No targeted or endo-
crine therapy is available for TNBC, and NAC is the cor-
nerstone of treatment. However, only 30–40% of TNBC 
patients achieve pCR with NAC, and there is a dire need 
for early identification of the nearly 70% of patients who 
should be offered alternative regimens to improve treat-
ment outcomes. In this study, we used ML approaches 
to predict NAC response and stratify patients into NAC 
responders and non-responders based on H&E-stained 
WSIs of tissue biopsies. We developed a two-step predic-
tion model: in the first step, the histology class of each 
H&E image tile was determined using a tile-level clas-
sification pipeline; in the second step, the spatial graph-
derived features associated with histology class pairs 
were used to predict patient-level NAC response (pCR 

Fig. 6 Patient-level NAC response prediction performance of the best classifier by LOO-CV in the model development cohort. A Confusion matrix 
showing performance of the rbfSVM model. B ROC curve of the best NAC response prediction pipeline. Abbreviations: LOO-CV, leave-one-out 
cross-validation; rbfSVM, radial basis function SVM; ROC, receiver operating characteristic; TN, true negative; FP, false positive; FN, false negative

Table 2 NAC prediction performance with Emory Hospital cohort

The average and 95% confidence interval of accuracy, AUC, sensitivity, specificity, precision, and F1-Score are presented for each model by a leave-one-out cross-
validation strategy

Accuracy AUC Sensitivity Specificity Precision F1

1NN 0.729
[0.703, 0.756]

0.735
[0.690, 0.779]

0.745
[0.693, 0.797]

0.706
[0.676, 0.736]

0.792
[0.755, 0.828]

0.768
[0.747, 0.788]

Linear SVM 0.624
[0.586, 0.660]

0.709
[0.654, 0.764]

0.490
[0.425, 0.555]

0.824
[0.801, 0.846]

0.806
[0.774, 0.839]

0.610
[0.581, 0.638]

RBF SVM 0.835
[0.808, 0.862]

0.827
[0.786, 0.868]

0.824
[0.768, 0.879]

0.853
[0.818, 0.887]

0.894
[0.849, 0.938]

0.857
[0.823, 0.892]

EnsembleTree RUSBoost 0.706
[0.686, 0.725]

0.681
[0.648, 0.714]

0.784
[0.735, 0.833]

0.588
[0.566, 0.611]

0.741
[0.705, 0.777]

0.762
[0.740, 0.784]
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vs RD). Our model unveils and leverages novel NAC 
response predictive features and spatial patterns of TME 
histology components from WSIs of TNBC tissue biop-
sies. This study also highlights the role of various TME 
components in accurately predicting NAC response.

TME components and their interactions can influ-
ence NAC response in patients with TNBC [70–72]. 
Traditional methods using human annotations are una-
ble to capture these spatial relationships. In contrast, 
our approach incorporates the spatial relationships of 
various TME components to predict NAC response in 
patients with TNBC. Using a graph structure for spa-
tial TME characterization, we identified eight histol-
ogy component pairs that accurately predicted NAC 
response. We expect that an investigation with higher-
order combinations (e.g., tertiary and quaternary) can 
further increase NAC response prediction accuracy. 
The top three TME features captured the spatial interac-
tions between (1) tumor cells and tTILs, (2) stroma and 
sTILs, and (3) tTILs and PGCCs. Studies have shown 
the predictive importance of tumor area, immune acti-
vation markers, and TILs in TNBC biopsies [73–76]. 

Our results provide further evidence that the interrela-
tionships between TILs, stroma, adipocytes, and tumor 
cells can predict NAC response in patients with TNBC. 
Other recently published studies that have relied on WSI 
models [77, 78] include one that used a federated learn-
ing model to predict NAC response in TNBC, and found 
hemorrhage, TILs, and necrosis as predictive of pCR and 
apocrine change, fibrosis, and noncohesive tumor cells 
being predictive of RD [77]. Another study quantified the 
stromal and tumor features in a WSI-based multi-omic 
(WSI, clinical, pathological) ML model and found that 
high collagenous stroma was best associated with lower 
pCR rates [78]. Our study used expert annotations that 
effectively guided the ML models to identify specific his-
tological patterns in spatial TME contexts. While our 
supervised ML model identified the common histological 
component of TILs, it did not rank hemorrhage, necro-
sis, fibrosis, and apocrine change as important predictors 
due to the lack of annotated training data.

Our NAC response prediction pipeline provides clas-
sification accuracy and attention maps that can be 
highly useful in clinical practice. Attention maps help 

Fig. 7 The NAC prediction model’s performance in the validation cohort. A Confusion matrix showing performance of the best NAC response 
prediction model. B ROC curve of the best NAC response prediction pipeline. Abbreviations: LOO-CV, leave-one-out cross-validation; rbfSVM, radial 
basis function SVM; ROC, receiver operating characteristic; TN, true negative; FP, false positive; FN, false negative; TP, true positive

Table 3 NAC prediction performance with Galway cohort

The average and 95% confidence interval of accuracy, AUC, sensitivity, specificity, precision, and F1-Score are presented for each model by a leave-one-out cross-
validation strategy

Accuracy AUC Sensitivity Specificity Precision F1

1NN 0.684
[0.645, 0.717]

0.671
[0.524, 0.824]

0.585
[0.522, 0.648]

0.789
[0.765, 0.814]

0.75
[0.712, 0.788]

0.653
[0.619, 0.696]

Linear SVM 0.608
[0.572, 0.643]

0.617
[0.574, 0.660]

0.488
[0.428, 0.548]

0.737
[0.707, 0.766]

0.667
[0.643, 0.690]

0.563
[0.542, 0.585]

RBF SVM 0.810
[0.783, 0.837]

0.832
[0.792, 0.873]

0.805
[0.749, 0.860]

0.816
[0.779, 0.853]

0.825
[0.787, 0.863]

0.815
[0.786, 0.844]

EnsembleTree RUSBoost 0.671
[0.643, 0.699]

0.691
[0.654, 0.727]

0.683
[0.625, 0.741]

0.658
[0.622, 0.694]

0.683
[0.645, 0.721]

0.683
[0.652, 0.714]
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pathologists and researchers by identifying tissue regions 
in a WSI that are highly predictive of NAC response, 
thereby improving slide review, reducing visual fatigue, 
and facilitating image data interpretation. Information 
from attention maps can be combined with other WSI-
derived data such as, Ki67 and pH3 immunohistochem-
istry-stained serial tissue sections, to train deep-learning 
models for enhanced prediction [79–81]. Ki67 and pH3 
are clinical biomarkers with demonstrated NAC response 
predictive value in TNBC tumors [82, 83]. Furthermore, 
our predictive model is promising for integrating data 
from various sources, such as electronic health records, 
laboratory test results, and demographic information, 
to provide predictions based on the overall view of the 
health status of patients.

Limitations of the study include small sample sizes, 
slide quality issues, and expensive computational pro-
cesses. Quality checks are necessary to ensure inclusion 
of adequate samples to develop effective training classi-
fiers. The different slide staining protocols, artifacts, and 
plating variances from different institutions (e.g., cutting 
glass slide edges) may have resulted in inconsistencies in 
slide quality. Thus, although we had a larger number of 
WSIs to begin with, the final validation cohort was whit-
tled down. Because the sample size was small, there was 
an imbalance of histology classes presented among dif-
ferent patient slides. More histology classes (e.g., micro-
calcification, muscle) should be included to improve the 
training of the tile-level histology classifier in all histology 
classes. We had two pathologists independently annotate 
the WSIs; however, more experts can be included in the 
future to validate the annotations and reduce interob-
server variability. Additionally, our pipeline is compu-
tationally expensive because multiple processes occur 
throughout the pipeline such as partitioning gigapixel 
WSIs, calculating various feature measures for each 
tile, constructing graphs based on spatial relationships. 
Computational constraints can stem from institutional 
high-performance computing (HPC) server data loss, 
standard maintenance, and outages. Refining the code 
for faster processing times (parallel processing) based on 
an advanced computer architecture could help support 
ML processes and data management. We cannot iden-
tify important spatially related histological features using 
image viewing software alone because the software is not 
scalable for large datasets. Each digital pathology soft-
ware is limited in the amount of data processed through 
its graphical user interfaces before exceeding the compu-
tational capabilities.

Future work will include model validation in a larger 
cohort. Future work will also include the develop-
ment of prediction models with higher-order feature 
combinations and graph convolution networks. It is 

important to develop an efficient pipeline to increase 
the amount of image data and decrease the computa-
tional time. Additionally, combinations of features with 
the highest predictive value will be used to increase 
the predictive power of the full feature set. For exam-
ple, attention map regions can be leveraged to focus on 
regions of interest, which can be used for more complex 
analyses, such as imaging mass cytometry, to distin-
guish between the various TIL subtypes and to further 
refine NAC response prediction. We also plan to extend 
our pipeline to incorporate other tissue stains, includ-
ing immunohistochemistry. A more efficient pipeline 
can reduce the frequency of false negatives and thus 
minimize the risk of undertreating patients, which can 
result in early relapse and poor outcomes.

Conclusions
Using feature engineering and supervised ML, we dem-
onstrated the strong discriminating power of TME his-
tological components and their spatial relationships 
in predicting NAC response in patients with TNBC. 
Among 120 histology feature pairs, we identified eight 
with the highest predictive value. The most predictive 
histology feature pair for pCR was tumor and tTILs, 
whereas microvessel density and PGCCs was the fea-
ture pair most strongly correlated with RD. The pro-
posed ML pipeline can help identify tissue areas in 
H&E-stained WSIs with a high predictive value for 
NAC response prediction and can help in clinical 
decision-making.
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