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Abstract 

Background Mammogram risk scores based on texture and density defined by different brightness thresholds are 
associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed 
to investigate causal relationships between these intercorrelated mammogram risk scores to determine their rel‑
evance to breast cancer aetiology.

Methods We used digitised mammograms for 371 monozygotic twin pairs, aged 40–70 years without a prior 
diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sis‑
ters Study. We generated normalised, age‑adjusted, and standardised risk scores based on textures using the Cirrus 
algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, 
bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination 
of FAmilial CONfounding (ICE FALCON) method.

Results The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22–0.81; all 
P < 0.005). We estimated that 28–92% of the associations between the risk scores could be attributed to causal 
relationships between the scores, with the rest attributed to familial confounders shared by the scores. There was con‑
sistent evidence for positive causal effects: of Cirrus, light areas, and bright areas on the brightest areas (accounting 
for 34%, 55%, and 85% of the associations, respectively); and of light areas and bright areas on Cirrus (accounting 
for 37% and 28%, respectively).

Conclusions In a mammogram, the lighter (less dense) areas have a causal effect on the brightest (highly dense) 
areas, including through a causal pathway via textural features. These causal relationships help us gain insight 
into the relative aetiological importance of different mammographic features in breast cancer. For example our find‑
ings are consistent with the brightest areas being more aetiologically important than lighter areas for screen‑detected 
breast cancer; conversely, light areas being more aetiologically important for interval breast cancer. Additionally, 
specific textural features capture aetiologically independent breast cancer risk information from dense areas. These 
findings highlight the utility of ICE FALCON and family data in decomposing the associations between intercorrelated 
disease biomarkers into distinct biological pathways.
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Introduction
Mammographic density refers to the areas of a two-
dimensional mammogram appears to be white. This is 
conventionally defined based on pixel threshold that can 
differentiate light or bright regions from dark regions, 
and can be measured using the semi-automated CUMU-
LUS software, developed by Yaffe et al. in the 1990s [1]. 
We call this measure Cumulus. After transforming to 
normality and adjusting for age and body mass index 
(BMI), Cumulus measure is an established risk factor for 
breast cancer [2].

We found that two additional mammographic density 
measures defined by successively higher pixel brightness 
thresholds and called Altocumulus and Cirrocumulus, 
respectively (Fig.  1), when similarly transformed and 
adjusted can better predict risk of screen-detected breast 
cancer [3]. Moreover, when fitted together, the breast 
cancer risk association with Cumulus measure was atten-
uated far greater than the associations with Altocumulus 
and Cirrocumulus. Interval breast cancer risk, however, 
was better predicted by Cumulus [4, 5]. It is important to 
note that the dense areas measured by these three meas-
ures overlap with each other, specifically with Cirrocu-
mulus being contained within Altocumulus, which, in 
turn, is encompassed by Cumulus (Fig. 1). Therefore, the 

mammographic image components defined by increasing 
pixel brightness threshold have the potential to reveal dif-
ferent information about breast cancer risk. This is also 
supported by recent findings from the Women’s Environ-
ment, Cancer, and Radiation Epidemiology (WECARE) 
study that the dense areas defined by Cirrocumulus out-
perform another two dense areas, i.e. the dense areas 
between the threshold of Cirrocumulus and the thresh-
old of Altocumulus, and between the threshold of Alto-
cumulus and the threshold of Cumulus, respectively, in 
terms of predicting contralateral breast cancer risk [6]; 
see the details in “Discussion” section.

As well as mammographic density, the breast paren-
chyma could possess other mammographic patterns, 
such as textures, that predict breast cancer risk [7]. For 
example we developed an automated textural feature-
based mammogram risk score, called Cirrus [8]. We 
found that Cirrus can improve risk prediction for inter-
val cancers when fitted with Cumulus, as well as improve 
risk prediction for screen-detected and young-age-at-
diagnosis breast cancer when fitted with Cirrocumulus 
[9, 10]. The associations between Cirrus and these three 
types of breast cancer remained after fitting the density 
measures. It is, therefore, possible that Cirrus contains 
independent and intrinsic risk information about breast 

Fig. 1 Example of mammographic areas divided into three areas defined by the breast area and density at increasing pixel intensity thresholds, 
using the same image. A: reference image; B: Cumulus; C: Altocumulus; D: Cirrocumulus; and E: All thresholds combined. The light areas are 
the Cumulus regions subtracting Altocumulus regions. The bright areas are the Altocumulus regions subtracting Cirrocumulus regions. The 
brightest areas are the Cirrocumulus regions
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cancer risk, especially given that pixel counting above a 
certain brightness level was not used as a criterion in its 
creation.

The different mammogram risk scores above are corre-
lated with one another to varying degrees [4, 5, 10, 11]. 
One potential explanation is the spatial overlap of the 
density measures. Other studies have also identified asso-
ciations between Cumulus and textural features [7, 12, 
13] but the reasons for this have yet to be addressed.

We have consistently found that when the differ-
ent mammogram risk scores are fitted together, their 
breast cancer risk gradients do not necessarily attenuate 
towards the null to the same extent as would be expected 
if their associations with one another were due solely to 
confounding [9, 10]. In particular, for screen-detected 
and young-age-at-diagnosis breast cancer, the Cumulus 
association became almost null after being fitted with 
Cirrus or Cirrocumulus.

There are also potentially causal relationships between 
Cumulus and the other risk scores. Whether the associa-
tions between risk scores are causal, and in which direc-
tion is unknown; they could also be due to non-causal 
effects such as confounding and conditioning on colliders 
[14]. To address the issues of causation, we took a novel 
approach.

Twin and family studies have shown that the density-
based risk scores are correlated between relatives; i.e. 
they are familial [15]. This means that there could be 
genetic or non-genetic factors shared by relatives such as 
twin pairs or sisters that determine these risk scores. Irre-
spective of the source of such familial determinants, their 
existence means that we can apply a causal inference 
method based on data from related pairs called Inference 
about Causation from Examining FAmiliaL CONfound-
ing (ICE FALCON) [16].

In this study, we applied ICE FALCON to try to 
understand if the causal relationships between the tex-
ture-based mammogram risk score (Cirrus) and three 
non-overlapping density-related mammogram risk scores 
(created from Cumulus, Altocumulus, and Cirrocumu-
lus), in order to provide evidence for which risk scores 
are more relevant to breast cancer aetiology.

Materials and methods
Study sample
We used data from the Australian Mammographic Den-
sity Twins and Sisters Study [17], which included female 
twin pairs and their sisters aged 40–70 years and without 
a prior diagnosis of breast cancer at the time of mam-
mography. Information of the participants was collected 
by questionnaires, and permissions to access mammo-
grams were obtained [18]. The current study involved 371 
monozygotic twin pairs with complete epidemiological 

information and the mammographic measurements 
required for analysis. No individual was identified as 
being at a high risk for breast cancer when taking mam-
mography nor after assessment of their mammograms.

Questionnaire
Demographic information, anthropometric measure-
ments, menstrual and reproductive history, lifestyle fac-
tors, and personal and family history of breast cancer 
were collected via telephone-administered question-
naires between 2004 and 2008. Zygosity was determined 
from genome-wide association data [19]. As there were 
time differences between age at questionnaire survey 
and age at mammography (on average 1.68  years, with 
177 participants having a more than 3-year difference), 
menopausal status and BMI were updated to those at age 
at mammography as follows. For menopausal status, if a 
participant was postmenopausal at questionnaire survey, 
and her age at menopause was older than age at mam-
mography, her status was changed to premenopausal. 
BMI at mammography was predicted from BMI at ques-
tionnaire survey using the method of Haby et  al. [20]. 
BMI at questionnaire survey was treated as the depend-
ent variable in a regression model which included birth 
cohort effects and 5-year group coefficients; the inter-
cept of the regression was then used as the BMI at age of 
mammography.

Mammogram‑based measures
Mammograms were retrieved from BreastScreen Aus-
tralia services (80%), clinics (5%), and from partici-
pants themselves (15%) and digitised using the Lumysis 
85 scanner at the Australian Mammographic Density 
Research Facility. For each woman, only the craniocau-
dal-view mammogram from the right breast taken clos-
est to the survey was used in this study.

The dense areas were measured using a computer-
assisted semi-automated thresholding technique and 
the CUMULUS software based on a sliding scale rang-
ing from 0 to 4095 pixels. Four observers were trained to 
measure mammographic density independently, as previ-
ously described [4].

A conventional pixel threshold was first used to iden-
tify dense areas with grey levels appearing at least 
mammographically light (the areas of which we call 
Cumulus). Similarly, the pixel brightness threshold was 
then increased to identify the denser areas (the areas 
of which we call Altocumulus). The pixel threshold was 
then further increased to identify the densest areas (the 
areas of which we call Cirrocumulus). The reproductiv-
ity was assessed by conducting the measurements in 
sets of 100 mammograms, and 10% of samples in each 
set were repeated. The intraclass correlation coefficients 
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were 0.98, 0.99, and 0.93 for Cumulus, Altocumulus, and 
Cirrocumulus, respectively. A total of 200 images were 
measured for Cumulus, Altocumulus, and Cirrocumu-
lus with the correlations between readers being 0.95, 
0.89, and 0.85, respectively. Details of these three density 
measurements can be found elsewhere [3, 4, 17].

We created two new non-overlapping measures: light 
areas, which subtracted Altocumulus from Cumulus, and 
bright areas, which subtracted Cirrocumulus from Alto-
cumulus. Along with a measure of the brightest areas 
(Cirrocumulus), their relationships, in terms of relative 
brightness, are shown in Fig. 1.

Cirrus is an agnostic algorithm developed using deep 
learning techniques applied to 20 textural features 
extracted from 46,158 analogue, craniocaudal-view, 
mammograms [8]. The algorithm was applied to the 
mammograms of the study sample to produce the Cirrus 
measures.

In this study, we conducted analyses of Cirrus and the 
three spatially independent density measures includ-
ing light, bright, and brightest areas (Cirrocumulus). 
Table 1 shows the summary characteristics of unadjusted 
measures.

Statistical methods
All mammographic measures were first transformed 
using a Box–Cox power transformation [21] to have an 
approximately normal distribution. As a result, (Cir-
rus-2907)2, brightestareas(Cirrocumulus)

1
5 , and the cube 

root of light areas and of bright areas were used in the 
analyses.

Given that age at mammography is negatively associ-
ated with the mammographic density measures being 
studied as putative risk factors for breast cancer, and that 
breast cancer risk increases with age, all the measures 
were adjusted for age at mammography. This adjustment 
explained 8–11% of the variances in the studied meas-
ures, except for the light areas, for which the proportion 
of the variance explained was 2%. The variance explained 
by other breast cancer risk factors combined, including 
age at menarche, menopausal status, BMI, ever being 
pregnant, number of live births, benign breast disease 
history, and breast cancer family history, was between 4 
and 7% (Additional file 1: Table S1).

The age-adjusted residuals were all standardised to 
have mean = 0 and standard deviation (SD) = 1. These 
standardised residuals are the mammogram risk scores 
used in the subsequent analyses. Correlations between 
these risk scores, within twin pair and within a person, 
respectively, were estimated using Pearson’s correlation 
coefficient.

The correlations between the risk scores were decom-
posed into different sources, including confounding and 

causal effects originated from various pathways using the 
Inference about Causation from Examination of FAmilial 
CONfounding (ICE FALCON) method [16]. ICE FAL-
CON uses data for pairs of relatives and uses the relative’s 
exposure acts as a proxy instrumental variable for a per-
son’s exposure. This method is analogous to Mendelian 
randomisation but does not use genetic variants as a pre-
sumed instrumental variable and does on rely on strong 
assumptions. ICE FALCON can make inference about 
causation even when the exposure and outcome are asso-
ciated due to familial confounding (i.e. confounders, both 
known and unknown, that are shared by the exposure 
and the outcome and by the relatives). The ICE FALCON 
method has been applied in multiple fields to assess evi-
dence for causality [16, 22–28].

Briefly, one risk score was assigned as the outcome Y 
variable and another as the predictor variable X, and 
the Y value of a twin was regressed against the X vari-
able of herself and/or of her co-twin (Additional file  1: 
Figure S1). To assess the evidence for reverse causation, 
the assigning of X and Y was reversed, i.e. the aforemen-
tioned predictor and outcome swapped their positions in 
the refitted regression models. This was done for every 
pair of risk scores.

Given the Y variables are correlated within twin pairs, 
regression was conducted using generalised estimating 
equations. This effect conditioned the Y value of a twin 
on the Y value of her co-twin. Our model assumed that 
the risk score of a twin cannot have a causal effect on the 
same risk score of her co-twin but allowed for causation 
between the risk scores within a twin.

Three models were fitted to the twin pair data. First, a 
twin’s outcome variable was regressed on her own pre-
dictor variable to estimate the regression coefficient 
βself (Model 1). Second, the twin’s outcome variable was 
regressed on her co-twin’s predictor variable to estimate 
the regression coefficient βco-twin (Model 2). Third, the 
twin’s outcome variable was regressed on both her own 
and her co-twin’s predictor variables to estimate the con-
ditional regression coefficients β′self and β′co-twin, respec-
tively (Model 3). The use of the prime on the conditional 
regression coefficient estimates indicates that the Model 
3 regression coefficients can be interpreted as the change 
in outcome for change in a given predictor while keeping 
the other predictor constant, which is not the same inter-
pretation for the corresponding unconditional regression 
coefficients of Models 1 and 2.

If the predictor has a causal effect on the outcome, 
βco-twin would be different from zero, β′co-twin would be 
closer to zero than βco-twin, and β′self would not be differ-
ent from βself. If there is familial confounding between 
the predictor and the outcome, β′self and β′co-twin would 
both be away from their corresponding coefficients βself 
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and βco-twin to a similar extent. If there is a combination of 
familial confounding and causal effects, the results would 
be the combinations of the two scenarios. According to 

Wright’s path tracing rules [29], the proportion of an 
association which could be attributed to causality is as 
follows:

Pr = (((Change in βco−twin − (Change in βself/βself)× βco−twin)/ρ)/βself)× 100%

Table 1 Characteristics of mammographic measures and covariates of the monozygotic twins

Continuous variables Mean Median 25% percentile 75% percentile

Cumulus  (cm2) 33.15 29.14 18.03 42.68

Altocumulus  (cm2) 12.37 11.18 6.79 16.10

Brightest areas (Cirrocumulus)  (cm2) 2.32 1.62 0.75 3.12

Light areas  (cm2) 20.79 17.40 10.54 26.79

Bright areas  (cm2) 10.04 8.91 5.81 13.31

Cirrus 2910.32 2910.40 2910.02 2910.75

BMI at mammograms (kg/m2) 25.42 24.66 22.21 27.71

Age at mammograms (years) 53.88 53.14 47.45 59.26

Difference between age at mammography 
and age at survey (years)

1.68 0.23  − 0.43 2.47

Categorical variables N (%)

Menopausal status

Premenopausal 282 (38%)

Postmenopausal 460 (62%)

Pregnant

Never 85 (11%)

Ever 657 (89%)

Benign breast disease

Never 515 (69%)

Ever 227 (31%)

Breastfeeding

Never 163 (22%)

Ever 579 (78%)

Number of live births

0 102 (14%)

1 57 (8%)

2 260 (35%)

3 206 (28%)

4 88 (12%)

≥5 29 (4%)

Number of relatives diagnosed with breast cancer

0 494 (67%)

1 193 (26%)

2 52 (7%)

3 3 (0%)

Age at menarche (years)

 < 12 105 (14%)

≥12 and < 15 508 (69%)

≥15 129 (17%)
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w h e r e  Change in βco−twin  =  βco−twin − β ′

co−twin
 ,  

Change in βself  = βself − β ′

self  , and ρ = the within-twin 
correlation of the predictor. Note that the parameter 
estimates were extracted only from the models which 
suggest that the predictor causes the outcome, not 
those that suggest the outcome causes the predictor; 
see [16]. The causal effect = βself × Pr , so the pro-
portion of an association that could be attributed to 
familial confounding is 1 − Pr.

To investigate causal pathways between two risk 
scores that are not through other risk scores, we used 
the standardised residuals of the predictor and the out-
come after adjusting for the third risk score in addition 
to age at mammography. The results from the analy-
ses were used to produce a summary causal diagram. 
Causal relationship analyses were also conducted by 
the level of breast density to check whether the causal 
relationships differ by density levels. The sample was 
divided into two subgroups according to the median 
of 30.5% for Cumulus per cent mammographic density, 
with each group including 140 complete twin pairs. 
ICE FALCON analyses were conducted within each 
subgroup; see Supplemental material for more details. 
All the analyses were conducted using the R package 
[30]. P < 0.05 was considered to be nominally statisti-
cally significant.

Results
Correlations between the mammogram risk scores
Table 2 shows that the mammograph risk scores were sub-
stantially correlated with each other and within the twin 
pairs. The within-twin-pair correlations in the risk scores 
ranged from 0.22 to 0.59. The within-twin cross-trait corre-
lations ranged from 0.28 to 0.81, and the cross-twin cross-
trait correlations ranged from 0.28 to 0.61 (all P < 0.05).

Causal inference for pairs of mammogram risk scores
Table  3 and Figure S2 (Additional file  1) show the ICE 
FALCON results and inference about proportions of 
familial confounding and causation; similar analyses 
using the Cumulus and Altocumulus measures can be 
found in Additional file 1: Table S2.

The bright areas and light areas
With the light areas as the predictor and the bright areas 
as the outcome, there was a decrease of 4% (P = 0.02) 
from βself = 0.802 (P =  10–161) in Model 1 to β′self = 0.770 
(P =  10–117) in Model 3 and a decrease of 86% (P =  10–34) 
from βco-twin = 0.513 (P =  10–34) in Model 2 to β′co-

twin = 0.070 (P = 0.01) in Model 3. These results were con-
sistent with the light areas having a causal effect on the 
bright areas that accounted for 89% of their association, 
with marginal evidence for familial confounding.

Table 2 The within‑twin within‑trait correlations, the within‑twin cross‑trait correlation, and the cross‑twin cross‑trait correlations 
between the mammogram risk scores (95% confidence intervals in parentheses)

X and Y represent two traits; *indicates the correlation of the trait within twin pairs; the within-twin within-trait correlations, i.e. Xself and Xco-twin, or Yself and Yco-twin; the 
within-twin cross-trait correlations, i.e. Xself and Yself, or Xco-twin and Yco-twin; and the cross-twin cross-trait correlations, i.e. Xself and Yco-twin, or Xco-twin and Yself
a adjusted for age at mammography and Cirrus

X Y Within‑twin within‑trait 
correlation

Within‑twin cross‑trait 
correlation

Cross‑twin 
cross‑trait 
correlation

Light areas Light areas 0.59 (0.54,0.64) * – –

Bright areas Bright areas 0.53 (0.47,0.58) * – –

Brightest areas (Cirrocumulus) Brightest areas (Cirrocumulus) 0.34 (0.27,0.40) * – –

Cirrus Cirrus 0.48 (0.42,0.53) * – –

Light areas a Light areas a 0.55 (0.50,0.60) – –

Bright areas a Bright areas a 0.41 (0.35,0.47) * – –

Brightest areas (Cirrocumulus) a Brightest areas (Cirrocumulus) a 0.22 (0.15,0.29) * – –

Light areas Bright areas – 0.81 (0.79,0.84) 0.52 (0.47,0.57)

Light areas Brightest areas (Cirrocumulus) – 0.49 (0.44,0.55) 0.35 (0.29,0.41)

Light areas Cirrus – 0.38 (0.32,0.44) 0.28 (0.21,0.35)

Bright areas Brightest areas (Cirrocumulus) – 0.69 (0.65,0.72) 0.40 (0.34,0.46)

Bright areas Cirrus – 0.45 (0.39,0.51) 0.33 (0.26,0.39)

Brightest areas (Cirrocumulus) Cirrus – 0.43(0.37,0.49) 0.28 (0.22,0.35)

Bright  areasa Brightest areas (Cirrocumulus)a – 0.28 (0.21,0.34) 0.60 (0.57,0.66)

Light  areasa Brightest areas (Cirrocumulus)a – 0.27 (0.21, 0.34) 0.39 (0.33, 0.45)
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With the bright areas as the predictor and the light 
areas as the outcome, there was a decrease of 6% 
(P =  10–5) from βself = 0.770 (P =  10–210) in Model 1 to 
β′self = 0.727 (P =  10–174) in Model 3 and a decrease of 64% 
(P =  10–33) from βco-twin = 0.404 (P =  10–19) in Model 2 to 
β′co-twin = 0.144 (P =  10–9) in Model 3. These results were 
consistent with the bright areas having a causal effect on 
the light areas that accounted for 58% of their association 
and familial confounding that accounted for 42%.

Therefore, the ICE FALCON results suggest the exist-
ence of familial confounding and bidirectional causality 
between the light areas and bright areas. To avoid con-
fusion arising from the potential bidirectional causation, 
we conducted analyses separately for the light areas and 
bright areas.

Cirrus and the light areas
With Cirrus as the outcome and the light areas as the 
predictor, there was a decrease of 7% (P = 0.03) from 
βself = 0.352 (P =  10–17) in Model 1 to β′self = 0.328 
(P =  10–16) after adjusting for co-twin’s light areas in 
Model 3. There was a decrease of 51% (P =  10–7) from 
βco-twin = 0.176 (P =  10–5) in Model 2 to β′co-twin = 0.087 
(P = 0.02) after adjusting for the twin’s light areas in 
Model 3. These results are consistent with there being a 
combination of familial confounding that accounted for 
37% of the association between the two risk scores as well 
as the light areas having a causal effect on Cirrus that 
accounted for 63% of their association.

We then reversed the predictor and outcome roles by 
assigning the light areas to be the outcome and Cirrus 
as the predictor. There was an increase from βself = 0.285 
(P =  10–15) in Model 1 to β′self = 0.303 (P =  10–20) in Model 
3 (P = 0.02). There was also an increase in the co-twin’s 
coefficient from βco-twin = 0.091 (P = 0.006) in Model 2 to 
β′co-twin = 0.135 (P =  10–5) in Model 3 (P = 0.003). These 
results were consistent with the findings above that the 
association was due to a combination of familial con-
founding and the light areas having a causal effect on 
Cirrus.

Cirrus and the bright areas
With Cirrus as the outcome and the bright areas as 
the predictor, there was a decrease of 8% (P = 0.002) 
from βself = 0.398 (P =  10–27) in Model 1 to β′self = 0.367 
(P =  10–21) in Model 3. There was a decrease of 35% 
(P =  10–4) from βco-twin = 0.215 (P =  10–8) in Model 2 to 
β′co-twin = 0.139 (P =  10–4) in Model 3. These results were 
consistent with there being a combination of familial 
confounding that accounted for 72% of the association 

between the two risk scores, and the bright areas having 
a causal effect on Cirrus that accounted for 28% of their 
association.

When we reversed the predictor and outcome roles 
by assigning the bright areas to be the outcome and Cir-
rus as the predictor, βself was not significantly different 
from β′self after adjusting for co-twin’s Cirrus (P = 0.5), 
and a similar statement applies to the lack of a difference 
between βco-twin and β′co-twin (P = 0.9). These results were 
not consistent with Cirrus having a causal effect on the 
bright areas.

Cirrus and the brightest areas (Cirrocumulus)
With brightest areas (Cirrocumulus) as the outcome 
and Cirrus as the predictor, there was a decrease of 7% 
(P =  10–3) from βself = 0.389 (P =  10–23) in Model 1 to 
β′self = 0.360 (P =  10–19) in Model 3 (P = 0.004), while there 
was a decrease of 40% (P =  10–5) from βco-twin = 0.191 
(P =  10–6) in Model 2 to β′co-twin = 0.114 (P = 0.002) in 
Model 3 (P =  10–5). These results were consistent with 
Cirrus having a causal effect on the brightest areas (Cir-
rocumulus), which accounted for 34% of their associa-
tion, as well as there being familial confounding which 
accounted for 64%.

When we reversed the predictor and outcome roles by 
assigning brightest areas (Cirrocumulus) to be the pre-
dictor and Cirrus as the outcome, there was no differ-
ence between βself and β′self (P = 0.5), while there was an 
increase from βco-twin = 0.138 (P =  10–5) in Model 2 to β′co-

twin = 0.166 (P =  10–7) in Model 3 that was not nominally 
significant (P = 0.08). These results were not consistent 
with the brightest areas (Cirrocumulus) having a causal 
effect on Cirrus.

The light areas and brightest areas (Cirrocumulus)
With the light areas as the predictor and the bright-
est areas (Cirrocumulus) as the outcome, there was a 
decrease of 10% (P = 0.008) from βself = 0.470 (P =  10–38) 
in Model 1 to β′self = 0.424 (P =  10–25) in Model 3 and 
a decrease of 64% (P =  10–13) from βco-twin = 0.284 
(P =  10–12) in Model 2 to β′co-twin = 0.103 (P = 0.005) in 
Model 3. These results were consistent with the light 
areas having a causal effect on the brightest areas (Cirro-
cumulus) that accounted for 55% of their association and 
familial confounding which accounted for 45%.

With the brightest areas (Cirrocumulus) as the pre-
dictor and the light areas as the outcome, there was an 
increase from βself = 0.347 (P =  10–23) in Model 1 to 0.395 
(P =  10–33) in Model 3 (P =  10–5) and an increase from 
βco-twin = 0.113 (P =  10–4) in Model 2 to β′co-twin = 0.221 
(P =  10–13) in Model 3 (P =  10–9). These results were not 
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consistent with the brightest areas (Cirrocumulus) hav-
ing a causal effect on the light areas.

The bright areas and brightest areas (Cirrocumulus)
With the bright areas as the predictor and the brightest 
areas (Cirrocumulus) as the outcome, there was a margin-
ally significant decrease of 4% (P = 0.06) from βself = 0.680 
(P =  10–159) in Model 1 to β′self = 0.653 (P =  10–109) in 
Model 3 (P = 0.06), while there was a decrease of 85% 
(P =  10–25) from βco-twin = 0.378 (P =  10–22) in Model 2 to 
β′co-twin = 0.058 (P = 0.07) in Model 3 of 85% (P =  10–25). 
These results were consistent with the bright areas hav-
ing a causal effect on the brightest areas (Cirrocumulus) 
that accounted for 85% of their association and familial 
confounding which accounted for 15%.

With the brightest areas (Cirrocumulus) as the predic-
tor and the bright areas as the outcome, there was no dif-
ference between βself and β′self (P = 0.21), while there was 
an increase in βco-twin = 0.136 (P =  10–4) in Model 2 to β′co-

twin = 0.202 (P =  10–14) in Model 3 (P = 0.02). These results 
were not consistent with the brightest areas (Cirrocumu-
lus) having a causal effect on the bright areas.

The above results were consistent with the exist-
ence of causal pathways from both the light areas and 
the bright areas to the brightest areas (Cirrocumulus), 
and to Cirrus, and from Cirrus to the brightest areas 
(Cirrocumulus).

Causal inference for the light areas and brightest areas 
(Cirrocumulus) not through Cirrus
With the light areas adjusted for Cirrus as the predictor 
and the brightest areas (Cirrocumulus) adjusted for Cir-
rus as the outcome, there was no difference between βself 
in Model 1 and β′self in Model 3 (P = 0.2), while there was 
a decrease from βco-twin = 0.198 (P =  10–6) in Model 2 to 
β′co-twin = 0.051 (P = 0.2) in Model 3 by 74% (P =  10–10). 
These results were consistent with a causal effect from 
the light areas to the brightest areas (Cirrocumulus) that 
not through Cirrus, which accounted for 64% of their 
association and with familial confounding that accounted 
for 36%.

With brightest areas (Cirrocumulus) adjusted for Cir-
rus as the predictor and light areas adjusted for Cirrus 
as the outcome, βself increased from 0.287 (P =  10–17) in 
Model 1 to 0.339 (P =  10–23) after adjusting for co-twin’s 
brightest areas (Cirrocumulus) in Model 3 (P =  10–5), 
βco-twin increased from 0.046 (P = 0.2) in Model 2 to β′co-

twin = 0.165 (P =  10–7) after adjusting for the twin’s bright-
est areas (Cirrocumulus) in Model 3 (P =  10–11). These 
results were consistent with a combination of a causal 
effect from the light areas to the brightest areas (Cirrocu-
mulus) not through Cirrus and familial confounding.

Causal inference for the bright areas and brightest areas 
(Cirrocumulus) not through Cirrus
With the bright areas adjusted for Cirrus as the predic-
tor and the brightest areas (Cirrocumulus) adjusted 
for Cirrus as the outcome, βself decreased, but not sig-
nificantly (P = 0.3), from 0.608 (P =  10–90) in Model 1 to 
β′self = 0.597 (P =  10–75) after adjusting for co-twin’s bright 
areas in Model 3, βco-twin decreased from 0.268 (P =  10–9) 
in Model 2 to the null (P = 0.3) after adjusting for co-
twin’s bright areas in Model 3 by 87% (P =  10–13). These 
results were consistent with the bright areas having a 
causal effect on the brightest areas (Cirrocumulus) not 
through Cirrus, which accounted for 92% of their asso-
ciation and the familial confounding accounting for 8% of 
the association.

With the brightest areas (Cirrocumulus) adjusted for 
Cirrus as the predictor and the bright areas adjusted for 
Cirrus as the outcome, βself did not change significantly 
(P = 0.3) after adjusting for co-twin’s brightest areas (Cir-
rocumulus), βco-twin increased from 0.08 (P = 0.186) in 
Model 2 to β′co-twin 0.153 (P =  10–6) after adjusting for 
the twin’s brightest areas (Cirrocumulus) in Model 3 
(P = 0.001). These results are consistent with a combina-
tion of a causal effect, from the bright areas to the bright-
est areas (Cirrocumulus) not through Cirrus, and familial 
confounding.

From the subgroup analyses according to the level 
of per cent mammographic density based on Cumulus 
measure, similar causal evidence was found between sub-
groups for the causal relationships between most pairs 
of mammographic risk scores, which supported that the 
causal relationships were unlikely to depend on breast 
density level (Additional file 1: Tables S3 and S4). How-
ever, the reduced sample size in subgroups might limit 
the statistical power to detect a difference.

Fig. 2 Diagrammatic representation of the inferred causal pathways 
between the Cirrus risk score and the risk scores based in the spatially 
independent mammographic density measures: light areas, bright 
areas, and brightest areas. Note: The thickness of the lines represents 
the relative strength of the inferred causal effects. For simplicity, 
the familial confounding between the pairs of risk scores 
is not shown in the diagram
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Figure  2 shows the possible causal pathways between 
the three mammographic density measures and Cirrus, 
based on the results presented.

Discussion
This study has shown that the amount of lighter (less 
dense) areas a woman has on her mammogram might 
cause her to also have more of the brightest (highly 
dense) areas, currently the strongest density meas-
ure associated with breast cancer risk [2–4, 7–9]. This 
causal relationship could be direct, but it could also be 
through the amount of less dense area having a causal 
effect on specific textural features that are themselves 
associated with breast cancer risk.

Our findings as encapsulated by Fig.  2 could also 
explain the observations from a recent publication of 
the WECARE study that the associations of contralat-
eral breast cancer risk with the light areas and bright 
areas  were attenuated to the null after adjusting for 
the brightest areas (Cirrocumulus), while the associa-
tion with the brightest areas (Cirrocumulus) remained 
unchanged; the risk gradients for the light, bright, and 
brightest areas (Cirrocumulus) were 1.24, 1.34, and 
1.40 when fitted alone, were 0.98, 1.01, and 1.40 when 
fitted together, respectively [6]. That is the associations 
of the light and bright areas with contralateral breast 
cancer risk could be due to their causal associations 
with the brightest areas (Cirrocumulus); the brightest 
areas (Cirrocumulus) are more aetiologically important 
than the light and bright areas in the causal pathway for 
contralateral breast cancer.

Note that when the light areas risk score was replaced 
by Cumulus (i.e. the areas including light, bright, and 
brightest areas (Cirrocumulus)), and the bright areas 
risk score was replaced by Altocumulus (i.e. the areas 
including bright and brightest areas (Cirrocumulus)) in 
the above models, the results were similar [6]. This is 
reasonable, because Cumulus is predominated by the 
light areas as well as bright areas (see Table  1), Alto-
cumulus is predominated by the bright areas, and both 
the light and bright areas have similar causal relation-
ships with the brightest areas (Cirrocumulus). Simi-
lar results were also observed for the associations of 
Cumulus, the brightest areas (Cirrocumulus), and/or 
Altocumulus with screen-detected and young-age-at-
diagnosis breast cancer, respectively [5, 9, 10]. Con-
versely, the association of interval breast cancer with 
the brightest areas (Cirrocumulus) was  attenuated to 
the null when adjusting for Cumulus [10]. Therefore, as 
what was observed from WECARE study for contralat-
eral breast cancer, the brightest areas (Cirrocumulus) 
are more aetiologically important than lighter areas 
for screen-detected and young-age-at-diagnosis breast 

cancer, while the light areas may have independent 
causal effects on interval breast cancer, distinct from 
brightest areas (Cirrocumulus). It is worth noting that 
the risk associations between interval cancer and the 
brightest areas (Cirrocumulus) could be due to con-
founding caused by the light areas.

Subtracting the causal pathways involving Cirrus, the 
causal effect of bright areas on brightest areas (Cirro-
cumulus) remained strong, while the causal effect from 
light areas on brightest areas (Cirrocumulus) was much 
weaker (i.e. effect size of 0.3 versus 0.6). This is consistent 
with the observations that the greater the brightness of 
the dense region the stronger its association with breast 
cancer risk [6, 10].

For Cirrus, the effect size of its causal associations with 
density measures is around 0.1, regardless of the direc-
tion and the threshold for defining dense areas. Dense 
area-based measures all have positive associations with 
Cirrus. Of them, bright areas and light areas are both the 
causes; while brightest areas (Cirrocumulus) are causally 
affected by Cirrus, which is less aetiologically important 
than light areas and bright areas, with both of their total 
effect sizes larger than 0.2. The weak causal relationships 
between Cirrus and other mammogram risk scores are 
reasonable. Apart from Cirrus capturing textural infor-
mation (i.e. various patterns identified by considering 
the spatial relationships between intensity levels), which 
is different from what can be captured using the thresh-
old-based measures (i.e. pixel counts above or below an 
intensity level), Cirrus also uses the information from the 
whole breast, rather than the local information meas-
ured by threshold-based measures. These results add 
grounded evidence to previous association-based specu-
lations that texture-based mammographic measures, at 
least Cirrus, could be an independent and intrinsic risk 
factor for breast cancer [7, 12].

The findings of this study could inform biological 
research in trying to understand why conventional den-
sity is associated with breast cancer risk. Mammographic 
density is defined by different levels of pixel brightness 
thought to represent different types of breast tissue 
based on their differential X-ray attenuation. Fat tissue 
appears to be radiologically dark, while fibroglandular 
tissue appears to be light or bright. As mammograms are 
two-dimensional representations of tissue composition, 
each pixel in the image reflects a combination of fibro-
glandular and fat tissue. Malignant breast tissue, how-
ever, is developed from fibroglandular tissue and appears 
radiologically brighter than normal fibroglandular tissue. 
Therefore, the brightest areas (Cirrocumulus) contain 
more pixels and are closer to the radiological appearance 
of malignant breast tissue than the light areas and bright 
areas. This might explain in part its typically stronger 
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association with screen-detected, young-age-at-diagno-
sis, and contralateral breast cancer risk, than other mam-
mographic density measures, as observed in the previous 
studies [6, 10]. It could also explain why the risk associa-
tions of conventional density measures were  attenuated 
once the brightest areas (Cirrocumulus) were  included 
[6, 10].

Additionally, light areas contain a greater amount of 
less dense tissue (dispersed fibroglandular tissue and pos-
sibly fat tissue), compared with bright areas. The differ-
ence in tissue composition might explain the observed 
bidirectional causal relationships between light areas 
and bright areas, with the causal effect size of 0.7 on 
bright areas caused by light areas being stronger than the 
reverse causal effect size of 0.4. Therefore, less dense tis-
sue, including dispersed fibroglandular tissue or fat tis-
sue, could have causal effects on dense fibroglandular 
tissue.

The study has also demonstrated the value of ICE FAL-
CON in decomposing associations between intercor-
related disease biomarkers into pathways. These causal 
associations could be identified and quantified even 
though there was also familial confounding, something 
that by definition cannot be considered if we used Men-
delian randomisation based on assuming genetic variants 
for these mammogram risk scores were true instrumen-
tal variable. The same approach could be applied to other 
biomarkers and diseases, such as lipids and cardiovascu-
lar diseases.

One strength of our study is that when conducting the 
ICE FALCON analyses, which can infer causation and its 
direction even if there is a familial confounding between 
mammogram risk scores, we used monozygotic twin 
pairs. This maximised the within-pair correlations in the 
risk scores, and they were close to 0.5. This also maxim-
ised the potential existence of non-genetic factors shared 
by twins and hence the amount of familial confounding.

Considering that there could be bidirectional causal 
relationships between two traits and the need to make 
robust inference, we conducted ICE FALCON analyses 
by switching the roles of predictors and outcome for each 
pair. Causal inference was only made when the evidence 
from the two rounds of analyses was consistent or does 
not contradict each other. We also extensively checked 
the influence of other common covariates, on the mam-
mographic measures included in this study, that have 
established or possible associations with breast cancer 
risk or mammographic density measures according to the 
previous publications.

One limitation of the study is that the epidemiological 
data were not collected strictly contemporaneous with 
the participants’ mammography episodes. But we have 
previously shown that mammographic density adjusted 

for age and/or BMI tracks strongly with time, at least 
over 8 years [31, 32]. Also, the time difference was small 
(on average 1.68  years, with 177 participants having a 
more than 3-year difference), and we updated the men-
opausal status and BMI based on the date information 
from the questionnaires and mammograms; we con-
sider that the influence on our conclusions due to the 
time difference should be minimal. Another limitation 
is that our analyses were based on film mammograms 
rather than digital mammograms, which have now 
replaced film mammograms and yield some different 
image characteristics [33]. We are currently working 
to try to replicate the study findings using digital mam-
mograms. Given our research on different definitions 
of density based on brightness found similar results 
for digitised and digital mammograms [3, 4] in terms 
of breast cancer risk prediction, we expect the associa-
tions and relevant causal estimates between the three 
dense areas are similar between digitised and digital 
mammograms. The presence of measurement error in 
our study poses another limitation, as the assessment 
of dense areas relies on human measurement. Measure-
ment error in the mammogram risk scores is expected 
to bias the associations between the risk scores and 
estimates for familial confounding and causal effects 
towards the null. However, considering the high repro-
ducibility of the measures in our study (see Methods), 
the measurement error is negligible; therefore, the 
influence of measurement error on our results is likely 
to be minimal.

To the best of our knowledge, we are the first to inves-
tigate causal relationships between mammographic 
measures that predict breast cancer risk. The previ-
ous studies on mammographic density have primar-
ily focused on its risk prediction capabilities for breast 
cancer [34, 35] with an emphasis on conventional mam-
mographic density, and twin and family studies mainly 
for investigating familial aggregation and heritability of 
the density measure [15, 18, 19, 36–38]. In contrast, our 
study takes a novel approach by applying a twin-based 
design to make causal inference in cross-sectional data. 
Specifically, we utilise the within- and cross-twin rela-
tionships between two variables and apply the analytic 
method of ICE FALCON. We are also the creators of 
the mammographic density measures defined by the 
increasing threshold of pixel brightness.

Conclusions
In a mammograme, the less dense (light and bright) 
areas could have a positive causal effect on the dens-
est (brightest) areas which eventually become cancers 
themselves. There could also be another pathway to 
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cancer evident through textural features not related to 
density per se, i.e. Cirrus, which also has a causal effect 
on the brightest areas (Cirrocumulus). Given our pre-
vious findings, the brightest areas (Cirrocumulus) are 
more aetiologically important than lighter areas for 
screen-detected, young-age-at-diagnosis, and contralat-
eral breast cancer, while light areas have an independent 
causal effect from the brightest areas for interval breast 
cancer. In addition to the causal effects from density 
measures, mammographic measures based on specific 
textural features, like Cirrus, contain aetiologically inde-
pendent information for breast cancer risk [6, 10].
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