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Abstract 

Background Breast cancer is the most common cancer among women with limited treatment options. To identify 
promising drug targets for breast cancer, we conducted a systematical Mendelian randomization (MR) study to screen 
blood metabolome for potential causal mediators of breast cancer and further predict target‑mediated side effects.

Methods We selected 112 unique blood metabolites from 3 large‑scale European ancestry‑based genome‑wide 
association studies (GWASs) with a total of 147,827 participants. Breast cancer data were obtained from a GWAS in 
the Breast Cancer Association Consortium (BCAC), involving 122,977 cases and 105,974 controls of European ances‑
try. We conducted MR analyses to systematically assess the associations of blood metabolites with breast cancer, 
and a phenome‑wide MR analysis was further applied to ascertain the potential on‑target side effects of metabolite 
interventions.

Results Two blood metabolites were identified as the potential causal mediators for breast cancer, including high‑
density lipoprotein cholesterol (HDL‑C) (odds ratio [OR], 1.09; 95% confidence interval [CI], 1.06–1.12; P = 9.67 ×  10−10) 
and acetate (OR, 1.24; 95% CI, 1.13–1.37; P = 1.35 ×  10−5). In the phenome‑wide MR analysis, lowering HDL‑C might 
have deleterious effects on the risk of the circulatory system and foreign body injury, while lowering acetate had 
deleterious effects on mental disorders disease.

Conclusions The present systematic MR analysis revealed that HDL‑C and acetate may be the causal mediators in the 
risk of developing breast cancer. Side‑effect profiles were characterized to help inform drug target prioritization for 
breast cancer prevention. HDL‑C and acetate might be promising drug targets for preventing breast cancer, but they 
should be applied under weighting advantages and disadvantages.
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Introduction
Breast cancer is the most common cancer among 
women, which is the leading cause of cancer death in 
females [1, 2]. Over the past couple of decades, breast 
cancer incidence rates have increased continuously 
[3]. The American Cancer Society showed that breast 
cancer accounted for 30% of the projected cancer 
incidence among women in 2021 [4]. However, cur-
rent treatments for breast cancer were quietly limited 
(e.g., surgery and radiation therapy) with a high rate of 
adverse side effects [5]. In addition, previous epidemio-
logical studies had investigated possible mediators for 
breast cancer, but specific biomarkers still need further 
identification [6]. Considering the huge costs of clinical 
trials and the high attrition rate of drug development, 
it is particularly important and urgent to explore the 
potential biomarkers implicated in the occurrence and 
progression of breast cancer prior to clinical testing.

Human metabolome consists of endogenous and 
exogenous molecules that represent the metabolic fin-
gerprint of individuals [7, 8]. Considering the close-
ness of metabolites to both genotype and phenotype, 
metabolomics is valuable for more clearly elucidating 
the pathological network underlying diseases [9–11]. 
Additionally, Nelson et al. demonstrated that a metab-
olite drug target supported by genetic evidence was 
twice as likely to gain market approval [12]. Moreover, 
in recent years, several genome-wide association stud-
ies (GWASs) have made great achievements in reveal-
ing genetic determinants for comprehensive human 
metabolome [13–16]. Therefore, we can accurately 
identify novel and safe drug targets for the preven-
tion of breast cancer at the genetic and metabolomic 
levels by Mendelian randomization (MR) analysis, an 
emerging analytical method using genetic variants as a 
proxy for an exposure to assess the causal relationships 
between exposure and outcomes without confounding 
or reverse causality biases [17].

Currently, potential causal associations between sev-
eral biomarkers and breast cancer have been estimated 
via MR design. For example, bilirubin and insulin-like 
growth factor-1 may be the risk factors for breast cancer 
[18, 19]. However, there is no large-scale MR analysis to 
systematically screen the human metabolome for prom-
ising drug targets of breast cancer so far. The phenome-
wide MR (Phe-MR) analysis can also reveal possible side 
effects of potential drug targets prior to clinical trials 
[20]. Therefore, we first conducted a large-scale two-sam-
ple MR analysis to systematically screen 112 circulating 
metabolites for identifying the potential causal mediators 
of breast cancer. Then, a phenome-wide MR analysis of 
679 disease traits was further applied to predict target-
mediated side effects of metabolite intervention.

Methods
Study design
We conducted a two-stage MR analysis of the blood 
metabolome to identify potential causal mediators for 
breast cancer based on the publicly available European-
ancestry GWASs (Fig. 1) [13–16, 21]. Ethics approval of 
the protocol and data collection, and written informed 
consent from each participant were obtained by the orig-
inal GWASs.

Data source for blood metabolome and breast cancer
Summary statistics for genetic variants associated with 
human metabolome were derived from 3 large-scale 
GWASs with a total of 147,827 individuals of European 
ancestry (Table  1) [13–15]. Briefly, Shin et  al. [13] ana-
lyzed 453 metabolic traits in 7,824 participants with 
approximately 3 million single nucleotide polymorphisms 
(SNPs) from two cohorts via Metabolon assay; Ket-
tunen et al. [14] analyzed 123 metabolic traits in 24,925 
participants with approximately 12 million SNPs from 
14 cohorts via nuclear magnetic resonance assay; and 
Borges et al. [15] analyzed 249 metabolic traits in 115,078 
participants with approximately 12 million SNPs from 
UK Biobank via Nightingale Health assay (Table 1). The 
public databases for the above-mentioned metabolites 
were available from the IEU GWAS database (https:// 
gwas. mrcieu. ac. uk/). These 3 metabolome GWASs meas-
ured the actual blood levels of metabolites by nuclear 
magnetic resonance (NMR) or Metabolon platform, and 
we used metabolite-related SNPs to reflect the blood 
metabolites levels at the genetic level in the present MR 
study. After excluding overlapping metabolites in these 
3 metabolome GWASs, a total of 469 metabolites were 
retained.

Genetic association data of breast cancer were derived 
from the GWAS conducted by Breast Cancer Association 
Consortium (BCAC), which is an international collabo-
ration to investigate genetic susceptibility to the risk of 
developing breast cancer. In brief, this GWAS included 
122,977 breast cancer cases and 105,974 controls of Euro-
pean ancestry with 1.06 million SNPs (available from IEU 
GWAS database: https:// gwas. mrcieu. ac. uk/), which was 
from 68 studies collaborating in BCAC, the Discovery, 
Biology and Risk of Inherited Variants in Breast Cancer 
Consortium, the Illumina iSelect genotyping Collabora-
tive Oncological Gene-Environment Study (iCOGS), and 
11 other breast cancer GWASs [16]. In BCAC, incident 
breast cancer cases were recruited from the hospitals and 
cancer registries [16].

Genetic instruments of blood metabolites
In the present MR study, SNPs that were identified to be 
associated with blood metabolites at the genome-wide 
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significance level (P value < 5 ×  10–8) in the published 
GWASs [13–15] and were not in linkage disequilibrium 
(LD) with other SNPs  (r2 < 0.1 within a clumping win-
dow of 500 kb) were used as instruments for these blood 
metabolites. When we encountered certain SNPs above 
the LD threshold of 0.1, the metabolite-related SNPs 
with the lowest P value were selected. By default, a proxy 
SNP  (r2 > 0.8) was selected for the MR analysis in the 
light of a 1000 Genomes European reference panel if the 
metabolite-related SNPs were not available in the out-
come dataset (i.e., breast cancer dataset). Subsequently, 
the gtx package in R (version 4.0.3; R Development Core 
Team) was applied to calculate the phenotypic variance 
of each blood metabolite explained by the corresponding 
genetic variations. To ensure sufficient statistical power 
for a valid causal inference, the metabolites with vari-
ance explained by genetic variants less than 0.5% were 
removed [22]. Furthermore, metabolites with less than 
3 correlated SNPs across the genome were also excluded 
on account of the requirement that at least 3 SNPs should 
be associated with the exposure in some MR sensitivity 
analyses [23].

In brief, 357 of 469 metabolites were further excluded 
according to criteria of the variance explained less than 
0.5% or metabolites with the number of associated 
SNPs less than 3. Finally, a total of 112 unique blood 
metabolites were included in the MR analysis (Fig. 1). A 

simplified description of the data concerning SNPs used 
as instruments in this MR study is listed in Additional 
file 1: Table S1, and further detailed information is avail-
able in Additional file 1: Table S2. F-statistic was used to 
evaluate the strength of the genetic instruments for blood 
metabolites. A higher F-statistic indicates a stronger 
instrument, and a cutoff of 10 is used to distinguish 
between strong and weak instruments [24].

Statistical analysis
The inverse-variance weighted (IVW) method was used 
as our main MR method to detect the causal effects of 
112 blood metabolite levels on the risk of breast cancer 
[25]. Cochran’s Q statistic was applied to estimate the 
heterogeneity among genetic instruments used in the 
main analysis [26]. We adopted random-effects IVW 
model if heterogeneity existed, otherwise fix-effects IVW 
model was used.

To assess the robustness of causal associations identi-
fied via the IVW method, we subsequently conducted 
a series of sensitivity analyses, including the weighted 
median approach, the MR-Robust Adjusted Profile Scor-
ing (MR-RAPS), and MR-Egger method [26–28]. The 
weighted median approach can provide an accurately 
causal estimate when up to 50% of genetic variants were 
invalid [26]. We also performed the MR-RAPS analysis 
due to its resilience to violations of certain assumptions 

Fig. 1 Conceptual framework of two‑stage Mendelian randomization (MR) study. The study consists of a two‑stage design that employs MR at all 
stages. First, we assessed the causality for the associations between 112 blood metabolites and the risk of breast cancer. Second, we investigated 
a broad spectrum of side effects associated with targeting identified metabolites in 679 non‑breast cancer diseases. Among these, each disease 
belongs to one of 16 different International Classification of Disease (ICD)‑9 chapters. At each stage, we adopted a Bonferroni‑corrected P value 
threshold accounting for both the number of metabolites and diseases analyzed
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underlying the MR study, such as horizontal pleiotropy 
and weak instruments [27]. Finally, MR-Egger regression 
was conducted to ascertain the potential directional plei-
otropy via the intercept term [28].

Phe‑MR analysis for on‑target side effects of breast 
cancer‑related metabolites
Phe-MR analysis was used to assess the potential on-
target side effects associated with hypothetical inter-
ventions that reduced the burden of breast cancer by 
targeting identified metabolites. Genetic association data 
of 1,403 disease traits with 408,961 white British partici-
pants were acquired from Zhou et  al.’s GWAS with 28 
million SNPs in the UK Biobank cohort (https:// www. 
leela bsg. org/ resou rces) [21]. Disease traits were defined 
in terms of “PheCodes,” a system developed to organ-
ize International Classification of Disease (ICD) codes 
into phenotypic outcomes suitable for systematic genetic 
analysis of numerous disease traits [21, 22]. In the pre-
sent study, sex-specific disease traits and disease traits 
with cases < 500 were excluded due to the issues of data 
availability and statistical power, respectively. Addition-
ally, to improve the interpretability of the results, we 
only selected representative phenotypes to minimize 
inherent redundancy between PheCodes. Finally, a total 
of 679 non-breast cancer disease traits were included in 
the Phe-MR analysis to further characterize the on-target 
potential side effects of breast cancer-related metabolites 
(Fig. 1; Additional file 1: Table S3). Genetic instruments 
for breast cancer-related metabolites were derived from 
the same GWASs as in the main breast cancer analy-
sis [16]. Based on the associations between metabolites 
and breast cancer, the final Phe-MR results were normal-
ized to a change in metabolite level corresponding to a 
10% reduction in breast cancer risk. We standardized 
Phe-MR results in this way to discover the side effects of 
metabolite-targeted interventions for breast cancer and 
to directly compare the magnitude and direction of the 
side effects.

All MR estimates were presented as odds ratios (ORs) 
with 95% confidence intervals (CIs) of outcomes. In stage 
1, an observed two-sided P < 4.46 ×  10–4 (Bonferroni-cor-
rected significance threshold calculated as 0.05 divided 
by 112 [for 112 metabolites]) was used to evaluate sta-
tistical significance for a potential causal association. In 
stage 2, the statistical significance threshold for Phe-MR 
analysis was set at P = 3.68 ×  10–5, which was corrected 
for multiple comparisons using the Bonferroni method 
(0.05/1358 [2 identified breast cancer metabolites in 
stage 1 × 679 diseases]). A two-sided P < 0.05 was con-
sidered as suggestive evidence for potential directional 
pleiotropy in the MR-Egger regression method [29]. All 
statistical analyses were performed with the packages of 

gtx, MendelianRandomization, TwoSampleMR, ggplot2, 
ggrepel, grid, gridExtra, gtable, qqman, RColorBrewer, 
and RGraphics in R (version 4.0.3; R Development Core 
Team).

Results
Strength of genetic instruments for blood metabolites
A total of 112 unique blood metabolites are included 
in the present MR study (Additional file  1: Table  S2), 
and the detailed information on genetic instruments 
for each blood metabolite is shown in Additional file  1: 
Tables S1, S2. The variance of metabolites explained by 
genetic instruments ranged from 0.68% to 47.25%. The 
F-statistics for the genetic instruments of blood metab-
olites range from 31 to 353, suggesting that there is no 
weak instrument bias in our MR study (Additional file 1: 
Table S1).

Screening the significant blood metabolites for potential 
causal mediators of breast cancer
The IVW method was used to estimate the causal rela-
tionships between 112 blood metabolites and the risk of 
breast cancer in the main MR analysis, and the detailed 
results are presented in Fig.  2 and Additional file  1: 
Table  S4. Among these 112 unique blood metabolites, 
genetically determined high levels of high-density lipo-
protein cholesterol (HDL-C), apolipoprotein A1, and ace-
tate were significantly associated with an increased risk 
of breast cancer. We subsequently conducted a series of 
sensitivity analyses to assess the robustness of our find-
ings in the main analysis. As shown in Additional file 1: 
Table  S5, genetically determined high HDL-C and ace-
tate remained significantly associated with an increased 
risk of breast cancer in the sensitivity analyses using the 
weighted median method and MR-RAPS method, and 
the MR-Egger regression showed no evidence of direc-
tional pleiotropy for associations of HDL-C and acetate 
with the risk of breast cancer. In summary, a total of 2 
potential causal mediators were identified for the risk 
of breast cancer (Table  2). Each SD increase in geneti-
cally determined HDL-C (OR, 1.09; 95% CI, 1.06–1.12; 
P = 9.67 ×  10−10) and acetate (OR, 1.24; 95% CI, 1.13–
1.37; P = 1.35 ×  10−5) was associated with a high risk of 
breast cancer.

Phe‑MR analysis for the associations between identified 
metabolites and 679 diseases
Phe-MR analysis was further performed to system-
atically assess the effects of the identified breast can-
cer metabolites on the risks of 679 non-breast cancer 
diseases to explore their potential side-effect profiles. 
Unlike the previous MR, the results of Phe-MR were 
standardized to a 10% reduction in the risk of breast 

https://www.leelabsg.org/resources
https://www.leelabsg.org/resources
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cancer mediated by targeting a given metabolite. Con-
sequently, resultant associations can be interpreted 
as concomitant side effects expected to arise if each 
metabolite is used to prevent breast cancer. In the Phe-
MR analysis using the IVW method, a total of 43 asso-
ciations reached a Bonferroni-corrected significance 
threshold of P = 3.68 ×  10−5 (0.05/1358 [2 metabo-
lites*679 diseases]) (Additional file 1: Tables S6, S7). In 
the sensitivity analyses with the methods of weighted 
median, MR-RAPS and MR-Egger, 4 significant disease 

associations for HDL-C and 1 disease association for 
acetate were identified (Additional file 1: Table S8).

Taken together, 5 significant associations were identi-
fied for targeting HDL-C and acetate with numerous 
non-breast cancer diseases (Fig.  3, Table  3, and Addi-
tional file 1: Table S9). In brief, lowering HDL-C had det-
rimental effects on the risk of 4 diseases (3 circulatory 
system diseases and foreign body injury), and lowering 
acetate had deleterious effects on tobacco use disorder. 

Fig. 2 Circular Manhattan plot displaying the associations between blood metabolites and the risk of breast cancer. The red dashed line represents 
the Bonferroni‑corrected significance threshold (P < 0.05/112 = 4.46 ×  10–4), and the labels are provided for significant metabolites. The 112 blood 
metabolites are grouped and color‑coded by super‑pathway listed in Table S1. The detailed results for the associations between blood metabolites 
and breast cancer by inverse‑variance weighted Mendelian randomization analysis are presented in Table S4



Page 7 of 11Wang et al. Breast Cancer Research            (2023) 25:9  

The most significant disease associations for HDL-C 
and acetate were coronary atherosclerosis (OR per 10% 
reduction in breast cancer risk, 1.30; 95% CI, 1.25–1.36; 
P = 4.13 ×  10−11) and tobacco use disorder (OR per 10% 
reduction in breast cancer risk, 2.87; 95% CI, 2.39–3.45; 
P = 6.87 ×  10−9), respectively (Table 3).

Discussion
By combining metabolomics with genomics, this system-
atic MR study provided novel clues that would contribute 
to the search for promising and safe drug targets of breast 
cancer. Among the 112 blood metabolites, we identified 
2 metabolites as potential causal mediators for breast 
cancer, including HDL-C and acetate. Namely, geneti-
cally predicted high HDL-C and acetate levels are asso-
ciated with increased risks of breast cancer. In addition, 
Phe-MR analysis was further used to assess the potential 
on-target side effects associated with breast cancer pre-
vention via lowering HDL-C and acetate. Beyond breast 
cancer, lowering HDL-C had detrimental effects on 3 
circulatory system diseases and foreign body injury, and 
lowering acetate had deleterious effects on 1 mental dis-
orders disease.

HDL-C is the smallest and densest lipoprotein with 
the effect of transport triglycerides and cholesterol in 
the blood [30]. It had been reported that the glycation 
and oxidation of HDL could lead to abnormal actions 
on breast cancer cell adhesion to human umbilical vein 
endothelial cells and extracellular matrix, thereby pro-
moting metastasis progression of breast cancer [31]. In 
a prospective study within the European Prospective 
Investigation into Cancer and Nutrition (EPIC)-Heidel-
berg cohort, high HDL-C levels were shown positively 
associated with breast cancer risk [32]. An analysis based 
on 4190 patients with operable breast cancer showed that 
low levels of HDL-C might be associated with a lower 
risk of breast cancer recurrence [33]. In another previ-
ous MR analysis of circulating lipid traits and breast can-
cer risk, each 15 mg/dL increase in genetically predicted 

HDL-C was associated with a 12% increased breast can-
cer risk [34]. In this large-scale metabolomics MR study, 
we further confirmed that HDL-C may be a mediator 
in the development of breast cancer. Besides these, our 
Phe-MR analysis further extended our knowledge on the 
potential side effects of lowering HDL-C for the preven-
tion of breast cancer. In the Phe-MR analysis, lowering 
HDL-C levels were shown to have detrimental effects on 
the risk of circulatory system diseases and foreign body 
injury. Overall, although HDL-C may be a drug target for 
breast cancer, it should be carried out after weighing the 
advantages and disadvantages of HDL-C.

Acetate, a short-chain fatty acid, has gained increasing 
focus as a critical regulator of fat mass [35]. It had been 
reported that acetate in the human body was mainly 
produced by the intestinal microbes or the liver metabo-
lizing alcohol [36]. Alcohol consumption can induce sus-
tained increases in plasma acetate concentrations, and 
the increases in plasma acetate are more marked dur-
ing long-term alcohol consumption [37]. After drinking 
alcohol, ethanol is broken down in the body to acetal-
dehyde, which is subsequently broken down to acetate 
[36]. Interestingly, alcohol consumption is a risk factor 
for breast cancer, and the World Cancer Research Fund 
(WCRF) found a 7% increased risk of breast cancer 
per 10  g alcohol per day [38]. Therefore, further stud-
ies about the association between alcohol consump-
tion and breast cancer will likely take into consideration 
the findings in the present study. Previous studies had 
shown that acetate was a nutrient source of cancer cells 
and is closely linked to breast cancer [36, 39, 40]. Schug 
et al. had identified the dependence of breast cancer and 
prostate cancer on acetate metabolism [41]. In addition, 
the 11C-acetate positron emission tomography tracers 
had been used for prostate cancer and hepatocellular 
carcinoma [42, 43], and our study may provide relevant 
evidence for the application of 11C-acetate positron emis-
sion tomography tracers in breast cancer. All in all, based 
on the data for breast cancer GWAS with 122,977 cases 

Table 2 MR analyses for blood metabolites having etiologic associations with breast cancer risks

IVW inverse-variance weighted, MR-RAPS Mendelian randomization robust adjusted profile score

Odds ratios (ORs) with their 95% confidence intervals (CIs) represent the association estimates with the risk of breast cancer of per 1-SD increase in HDL-C and acetate 
levels, respectively

Significant threshold in stage 1 was set at P < 0.05/112 = 4.46 ×  10–4 (Bonferroni-corrected significance threshold calculated as 0.05 divided by 112 [for 112 blood 
metabolites])

Metabolite IVW Weighted median MR‑RAPS MR‑Egger 
Intercept

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value P value

HDL‑C 1.09 (1.06–1.12) 9.67 ×  10–10 1.09 (1.05–1.13) 2.07 ×  10–5 1.09 (1.07–1.11) 1.85 ×  10–15 0.16

Acetate 1.24 (1.13–1.37) 1.35 ×  10–5 1.33 (1.15–1.52) 7.54 ×  10–5 1.25 (1.13–1.38) 8.89 ×  10–15 0.13
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and 105,974 controls of European ancestry, we found that 
genetically predicted blood acetate levels were positively 
associated with the risk of breast cancer. This finding was 

consistent with previous experimental studies and pro-
vided population-based evidence that acetate is a poten-
tial causal mediator of breast cancer from the viewpoint 

Fig. 3 Potential on‑target side effects associated with HDL‑C and acetate. Odds ratios (ORs) with their 95% confidence intervals (CIs) represent the 
effect estimates on the risk of multiple non‑breast cancer diseases of per 10% reduction in risk for breast cancer by targeting HDL‑C and acetate, 
respectively. Associations above the horizontal black midline represent deleterious side effects. In contrast, associations below the horizontal black 
midline represent beneficial side effects
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of genetics. Furthermore, our Phe-MR analysis suggested 
that lowering acetate levels for preventing breast cancer 
had a deleterious effect on tobacco use disorder. There-
fore, acetate may be a potential drug target for prevent-
ing breast cancer, but caution with possible adverse side 
effects should be taken in the clinic.

Our findings have several important public health 
and clinical implications. Given that rapidly progres-
sive breast cancer eludes screening and presents at an 
advanced stage, it is very important to ascertain some 
promising biomarkers for early identifying individuals at 
high risk of breast cancer. From the findings of our study, 
HDL-C and acetate, the potential biomarkers of devel-
oping breast cancer, might be served as drug targets for 
preventing breast cancer. Certainly, further clinical trials 
are needed to confirm the feasibility and safety of HDL-C 
and acetate in the prevention of breast cancer, and the 
validated findings will promote precise prevention for 
breast cancer.

Our study has some strengths. Firstly, to the best of our 
knowledge, this is the first systematic MR study using 
blood metabolites as exposures to estimate their causal 
effects on the risk of breast cancer. Secondly, the present 
MR study was conducted on the basis of several large-
scale GWASs, which enabled us to make a valid causal 
inference with high statistical power. Thirdly, our results 
were robust by means of strict quality control conditions 
and a series of sensitivity analyses. Fourthly, we further 
employed the Phe-MR analysis to screen promising drug 

targets for comprehensively predicting the on-target side 
effects of identified metabolites.

There are also several limitations that should be noted. 
Firstly, all GWAS data of the present MR study were 
from European populations (mostly whites), which might 
limit the reliability when extrapolating our findings to 
non-European populations and other races. However, 
this restriction minimized population and race strati-
fication bias, and further studies are needed to confirm 
our findings in other populations with different ethnic 
background. Secondly, although the MR study included 
112 different metabolites from three large GWASs via 
strict selection criteria, these metabolites represent only 
a small proportion of the blood metabolomes. There-
fore, the associations between more blood metabolites 
and breast cancer required further investigation. Thirdly, 
the UK Biobank did not collect the fasting blood, while 
the blood metabolites from Shin et al. [13] and Kettunen 
et  al. [14] were measured in fasting blood. Therefore, 
possible bias may be caused by different studies collect-
ing blood samples in a different way. Further studies on 
the basis of larger GWAS with fasting blood samples 
are warranted to confirm our findings. Finally, our study 
mainly focuses on the overall incidence of breast cancer 
and lacked information on breast cancer subtypes. There-
fore, it is of clinical interest to investigate the relationship 
between breast cancer subtypes and blood metabolome 
merits in the future to provide more information for spe-
cific prevention and treatment.

Table 3 Phe‑MR analyses for causal associations of HDL‑C and acetate with the risk of multiple non‑breast cancer diseases

Odds ratios (ORs) with their 95% confidence intervals (CIs) represent the effect estimates on the risk of multiple non-breast cancer diseases of per 10% reduction in 
risk for breast cancer by targeting HDL-C and acetate, respectively

Significant threshold in stage 2 was set at set at P < 0.05/1358 = 3.68 ×  10–5, which was corrected for multiple comparisons using the Bonferroni method (0.05/1358 [2 
identified breast cancer metabolites in stage 1 × 679 diseases])

IVW inverse-variance weighted, MR-RAPS Mendelian randomization robust adjusted profile score, Phe-MR phenome-wide Mendelian randomization, SNPs single 
nucleotide polymorphisms

PheCode Outcome Disease 
chapter

IVW Weighted median MR‑RAPS MR‑Egger 
Intercept

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value P value

HDL-C

411.4 Coronary ath‑
erosclerosis

Circulatory 
system 

1.30 (1.25–1.36) 4.13 ×  10–11 1.23 (1.18–1.29) 3.96 ×  10–6 1.32 (1.29–1.35) 2.45 ×  10–33 0.07

442.11 Abdominal aor‑
tic aneurysm

Circulatory 
system 

1.53 (1.40–1.67) 1.04 ×  10–9 1.49 (1.29–1.73) 7.56 ×  10–6 1.54 (1.42–1.67) 1.01 ×  10–9 0.52

444 Arterial 
embolism and 
thrombosis

Circulatory 
system 

1.91 (1.72–2.12) 7.01 ×  10–10 2.24 (1.86–2.69) 1.12 ×  10–5 1.92 (1.74–2.12) 2.32 ×  10–11 0.71

1001 Foreign body 
injury

Injuries and 
poisonings

1.72 (1.58–1.87) 1.79 ×  10–10 1.94 (1.65–2.27) 3.01 ×  10–5 1.73 (1.59–1.88) 2.10 ×  10–10 0.19

Acetate

318 Tobacco use 
disorder

Mental disor‑
ders

2.87 (2.39–3.45) 6.87 ×  10–9 3.11 (2.37–4.07) 2.84 ×  10–5 2.95 (2.44–3.56) 1.21 ×  10–8 0.92
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Conclusions
The present systematic MR analysis revealed that HDL-C 
and acetate may be the causal mediators in the risk of 
developing breast cancer. Side-effect profiles were char-
acterized to help inform drug target prioritization for 
preventing breast cancer. HDL-C and acetate may be 
promising drug targets for the prevention of breast can-
cer under weighting advantages and disadvantages.
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