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Abstract

This systematic review aimed to assess the methods used to classify mammographic breast parenchymal features in
relation to the prediction of future breast cancer. The databases including Medline (Ovid) 1946-, Embase.com 1947-,
CINAHL Plus 1937-, Scopus 1823-, Cochrane Library (including CENTRAL), and Clinicaltrials.gov were searched through
October 2021 to extract published articles in English describing the relationship of parenchymal texture features with
the risk of breast cancer. Twenty-eight articles published since 2016 were included in the final review. The identifica-
tion of parenchymal texture features varied from using a predefined list to machine-driven identification. A reduction
in the number of features chosen for subsequent analysis in relation to cancer incidence then varied across statistical
approaches and machine learning methods. The variation in approach and number of features identified for inclusion
in analysis precluded generating a quantitative summary or meta-analysis of the value of these features to improve
predicting risk of future breast cancers. This updated overview of the state of the art revealed research gaps; based on
these, we provide recommendations for future studies using parenchymal features for mammogram images to make
use of accumulating image data, and external validation of prediction models that extend to 5 and 10 years to guide
clinical risk management. Following these recommendations could enhance the applicability of models, helping
improve risk classification and risk prediction for women to tailor screening and prevention strategies to the level of
risk.
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Introduction

Evolving technology from film mammograms to digi-
tal images has changed the sources of data and ease
of access to study a range of summary measures from
breast mammograms and the risk of breast cancer [1,
2]. These include more extreme measures of density and
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also measures of breast texture features. In particular, as
women have repeated mammograms as part of a regu-
lar screening program [3-5], access to repeated images
including changing texture features has become more
feasible in real time for risk estimation and classifica-
tion and appropriately counseling women for their risk
management [6-8]. Using these features may facilitate
improvement in risk classification [9] and hence more
fully support precision prevention for breast cancer [8,
10].

The leading measure for long-term risk categorization
extracted from mammograms is breast density [11, 12].
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This is now widely used and reported with many states
requiring the return of mammographic breast density
measures to women as part of routine screening [13].
Mammographic breast density is a strong reproducible
risk factor for breast cancer across different approaches
used to measure it (clinical judgment or semi/automated
estimation) [11] and across regions of the world [11, 14,
15]. However, density is known to be affected by con-
founders such as age and body mass index [16, 17]. Tex-
ture features within mammograms have been much less
frequently studied for their contribution to risk stratifi-
cation and risk prediction but could potentially be less
impacted by these confounders. Moreover, mammo-
gram density only aims to measure the relative amount
of fibroglandular tissue in the breast [18], which limits
the ability to fully capture heterogeneity between patients
in the breast tissue, while patterns of breast parenchy-
mal complexity, formed by the x-ray attenuation of fatty,
fibroglandular, and stromal tissues, are known to be asso-
ciated with breast cancer [19, 20].

In 2016, Gastounioti and colleagues summarized the
literature at that time to classify approaches to paren-
chymal texture classification: (1) gray-level features—
skewness; kurtosis; entropy; and sum intensity, (2)
co-occurrence features—entropy; inertia; difference
moment; and coarseness, (3) run-length measures gray-
level non-uniformity and run-length non-uniformity, (4)
structural patterns measures lacunarity, fractal dimen-
sion, and (5) multiresolution spectral features [21]. They
conclude from this review that multiparametric texture
features may be more effective in predicting breast can-
cer than single-group features. Although this review
included studies using the ipsilateral and/or contralateral
breast, it did not report on their time horizon. To address
this and use of more comprehensive summaries of these
features since their review in 2016, we conducted a sys-
tematic review of published studies.

In current medical practice, risk prediction is viewed
as an objective way to assess the risk of a patient devel-
oping a disease such as a 10-year risk of cardiovascular
disease [22]. Risk prediction models are often evaluated
in terms of calibrations and discrimination. For instance,
the AUC (a discrimination measure) describes how well
a given model separates events from non-events. On the
other hand, association measures such as a significant
hazard ratio for an individual risk factor do not neces-
sarily translate to a significant increase in discrimination
performance when it is added to a prediction model [23].

We aim to summarize the methods used to classify
mammographic breast parenchymal features in relation
to the prediction of future breast cancer, the time from
mammogram to the diagnosis of breast cancer, the analy-
sis of data from either one or both breasts (averaged or
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assessed individually), the study design, and the statistical
methods for estimating the association between features
and risk. We then identify gaps in evidence to prioritize
future studies and speed us to better support the preci-
sion prevention of breast cancer.

Methods

Eligibility criteria

Population

We considered all studies of adult women (at least 18
years old) involving original data. Abstract-only papers,
review articles, and conference papers were excluded.

Intervention

We included studies measuring at least one non-density
mammographic feature. A study had to explicitly define
the mammographic features included. Studies that did
not do this, such as those which used a deep model, were
excluded because we would be unable to determine the
characteristics of features used and compare these to
other studies.

Comparison
We compared models using parenchymal texture features
to those that did not.

Outcomes
Our primary outcome of interest was the risk of breast
cancer, including both invasive and in situ cancers. The
risk of breast cancer was required to be dichotomized
(yes/no). Analysis of other risks (e.g., risk of interval vs.
screen-detected cancer) and studies examining the asso-
ciation between mammographic features and other risk
factors were excluded to narrow the scope of our paper.
Only studies available in English were included. Addi-
tionally, only studies published from 2016 onward were
included to avoid overlap with previous reviews.

Information sources

The published literature was searched using strategies
designed by a medical librarian for the concepts of breast
density, mammography, and related synonyms. These
strategies were created using a combination of controlled
vocabulary terms and keywords, and were executed in
Medline (Ovid) 1946-, Embase.com 1947-, CINAHL
Plus 1937-, Scopus 1823-, Cochrane Library (including
CENTRAL), and Clinicaltrials.gov. Results were limited
to English using database-supplied filters. Letters, com-
ments, notes, and editorials were also excluded from the
results using publication type filters and limits.

Search strategy
An example search is provided below (for Embase).
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(breast density’/exp OR ((breast NEAR/3 densit*):
tiab,kw OR (mammary NEAR/3 densit*):ti,ab,kw
OR (mammographic NEAR/3 densit*):ti,ab,kw))
AND  (‘mammography/deOR  mammograph*:
ti,ab,kwOR mammogram*:ti,ab,kwOR mastrogra
phy:ti,ab,kwOR digital breast tomosynthesis’ti,ab,
kwOR x-ray breast tomosynthesis’ti,ab,kw)NOT
(editorial’/it OR ’letter’/it OR ’note’/it) AND [eng-
lish]/lim

The search was completed for the first time on Septem-
ber 9, 2020, and was run again on October 14, 2021, to
retrieve citations that were published since the original
search. The second search was dated limited to 2020-pre-
sent (October 2021). Full search strategies are provided
in the Additional file 1: appendix.

Selection process

Two reviewers (AA, CS) worked independently to
review the titles and abstracts of the records. Next, the
two reviewers independently screened the full text of
the articles that they did not reject to determine which
were eligible for inclusion. Any disagreements about
which articles to include were resolved by consensus.
Two reviewers (AA, YC) then went through this subset
independently and excluded the ones without explicitly
defined features.

Data collection process

We created a data extraction sheet that two reviewers
(AA, YC) used to independently extract data from the
included studies. Disagreements were resolved by a third
reviewer. If included studies were missing any desired
information, any additional papers from the works cited,
such as previous reports, methods papers, or protocols,
were reviewed for this information.

Data items

Any estimate of the risk of breast cancer was eligible
to be included. Risk models could combine multiple
texture features or examine texture features individu-
ally. The predictive ability could be evaluated using an
area under the curve, odds ratio, matched concord-
ance index, hazard ratio, or p value. No restrictions on
follow-up time were placed. For studies that reported
multiple risk estimates, we prioritized the area under
the curve with the most non-mammogram covariates
included from the validation study if applicable. If the
study did not report an area under the curve, we listed
the primary models which were discussed in the Results
section of the paper.
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We collected data on:

the report: author, publication year

the study: location/institution, number of cases,
number of controls, study design

the research design and features: lapsed time from
mammogram to diagnosis

the mammogram: machine type, mammogram
view(s), breast(s) used for analysis

the model: how density was measured, number of
texture features extracted, types of texture features
extracted, whether feature extraction was machine
or human, whether all features were used in the
analysis, how features for analysis were chosen, non-
mammogram covariates included, established con-
founders for density, prediction horizon, statistical
methods for assessing risk association

Risk of bias

The quality of the included studies was assessed using
the Quality in Prognostic Studies (QUIPS) tool [24]. Risk
of bias was rated as high, moderate, low, or unclear by
two reviewers (AA and CS) across six domains includ-
ing study participation, study attrition, prognostic
factor measurement, outcome measurement, study con-
founding, and statistical analysis and reporting. Raters
independently recorded supporting information and jus-
tification for judgments of risk of bias for each domain.
Any disagreements were resolved by consensus.

Human subjects

This study did not involve human subjects, and therefore
oversight from an Institutional Review Board was not
required.

Registration and protocol
This review was not registered and a protocol was not
prepared.

Results

The search and study selection process is shown in Fig. 1. A
total of 11,111 results were retrieved from the initial data-
base literature search and imported into Endnote. Eleven
citations from ClinicalTrials.gov were retrieved and added
to an Excel file library. After removing duplicates, 4863
unique citations remained for analysis. The search was
run again in October 2021 to retrieve citations that were
published since the original search. A total of 1633 results
were retrieved and imported to Endnote. After removing
duplicates, including duplicates from the original search,
466 unique citations were added to the pool of results for
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Fig. 1 PRISMA 2020 Flow Diagram for identification of included studies

No non-density texture feature (n=71)
Outcome not risk of BC (n = 81)

Not mammogram feature (n=14)
Abstract or no primary data (n =6)
Duplicate (n=3)

Not in English (n=2)

screening. Between the two searches, a total of 11,577
results were retrieved, and there were 5329 unique citations.
Of the 5329 unique citations, 5124 were excluded based
on the review of the title and abstract. Two hundred and
five full-text reports were retrieved and assessed for eligibil-
ity by two readers. Of these, 177 were excluded for reasons
such as not measuring a non-density feature, not reporting
risk of breast cancer as an outcome, being an abstract or a
duplicate paper, or not being published in English.

We identified 28 studies published since 2016 that met
eligibility criteria as set out in the selection flowchart
[25-52].

Of the 28 studies, only 7 were based on digitized analog
film images [26, 38, 40, 47-49], 2 did not provide details
[34, 37], and the others used full-field digital mammo-
grams from Hologic, GE, or other manufacturers, or
did not report details (see Table 1). The number of cases
included in studies ranged from 20 up to 1900. Of the 28
studies, 8 included fewer than 100 cases [30, 35, 37, 41,
42, 46, 50, 51]. Most studies used a case—control design,

although there were a few prospective and retrospective
cohort studies.

Tables 2 and 3 summarize how the texture features
were identified in the mammographic images in studies
not using the contralateral breast and those which did,
respectively. These methods included defined masses or
calcifications [29], or a predefined list of texture features
such as 34 [31] or 44 [32] or even 112 [45] or 944 [44]
initial features. Machine-driven identification of features
was also reported. After machine identification, the fea-
tures were reduced for analysis often based on statistical
rules.

The approach to the assessment of breast parenchy-
mal texture and side of body (ipsilateral or contralateral
breast) varied across studies. Almost half of the stud-
ies (13 out of 28) used BIRADs as the baseline measure
of density [28-32, 34-36, 41, 42, 48-50]. Others used
Volpara and machine-derived density or Cumulus-like
approaches. Time from mammogram to diagnosis of
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breast cancer ranged from under 24 months on average
up to 82 months.

We next assessed the value added from the addition
of texture features to prediction models for breast can-
cer. As noted in Tables 2 and 3, there was a substantial
variation in the number of texture features included and
the method of their identification for inclusion (human-
defined or machine-identified). Many papers only
reported on the association of texture with the risk of
breast cancer using an odds ratio or relative risk. These
were often contemporaneous with diagnosis (meas-
ured on contralateral breast) [26, 39, 44, 45, 52]. Model
building details and results were not routinely reported.
Tables 4 and 5 give the AUC for a baseline model with-
out texture and then the value for the model with texture
added when these were reported separately. Studies were
not comparable across time horizon and baseline models.
Hence, we did not proceed to a numerical quantitative
summary such as meta-analysis of AUC values. However,
within studies we saw that those that reported concord-
ance statistics for models primarily reported results of
models with MD and then MD plus texture features. In
these studies, we saw an increase in reported concord-
ance when texture features were added. The addition of
parenchymal features often increased the AUC by 0.05 in
studies not using the contralateral breast as presented in
Table 6. Several studies using the contralateral breast at
the time of cancer diagnosis noted even greater increases,
such as Pertuz with a change in AUC from 0.609 to 0.786
when using texture features (Table 5) [52].

Reporting on established confounders for mammo-
graphic density varied across studies, with some account-
ing for age, body mass index, hormone therapy, and
menopausal status while others considered fewer or even
none in analyses. The prediction horizon, or how far
ahead a model predicts breast cancer, was only defined for
3 of the studies [29, 30, 32] and was usually the time to the
next routine screening mammogram, but less than 3 years
on average. Examples are summarized to give more con-
text to the details in the tables. Eriksson et al. [29] evalu-
ated data from the KARMA cohort that followed 70,877
women for up to 3 years after baseline mammograms.
The median time from the screening mammogram to
breast cancer diagnosis was 1.74 years and 433 breast
cancers were diagnosed. In their analysis, they used both
2- and 3-year horizons. The AUC improved from 0.64 for
the model that included age, MD, and BMI to 0.71 after
adding calcifications. Heidari 2018 [32] chose 4 features
associated with the asymmetry of mammogram images
from a pool of 44 machine-identified features. The time
horizon was 12 to 18 months, defined as the time to the
next screening mammogram. A machine learning classi-
fier was built to predict breast cancer on the subsequent

Page 12 0of 18

mammogram, reducing the features to a vector with 4 fea-
tures. The AUC improved from 0.62 to 0.68.

Not all studies reported concordance statistics for their
analysis, a metric to evaluate the predictions made by an
algorithm defined as the proportion of concordant pairs
divided by the total number of possible evaluation pairs.
We summarized six studies in Table 6 that reported asso-
ciation measures for texture features with breast cancer
(27,28, 37, 41, 46, 47].

Results from the assessment of the risk of bias are
shown in Additional file 1: Table S1. While many studies
demonstrated similar risk of bias within specific domains,
there was some variability, especially for study confound-
ing. For study confounding, studies that adjusted for age,
body mass index, menopausal status, and hormone ther-
apy were considered to have a lower risk of bias.

Study reporting impacted our ability to rate the risk of
bias. None of the studies reported information to judge
study attrition risk of bias, leaving all with an unclear risk
of bias. Likewise, for the study population, most studies
did not report on the characteristics of the source popu-
lation making it difficult to determine whether the popu-
lation of interest was adequately represented.

Discussion

This review examined studies that evaluated the value
of adding texture features to predict future breast can-
cer incidence or reported the association between these
features and risk, of which we identified 28. Our findings
suggest that risk prediction model performance increases
when breast texture measures are added to mammo-
graphic breast density. The majority of studies evaluat-
ing future risk were limited to less than 3 years. Evidence
using a longer interval from mammogram to diagnosis
is necessary to be sufficient to guide breast cancer risk
management or prevention [6, 53—56]. Results also dem-
onstrate the need for a uniform approach to assess tex-
ture to enable comparison between studies.

The use of machine learning approaches to overcome
variability in the assessment of BD has been reviewed
recently [57]. The challenges of developing consistent
approaches to the assessment of texture extend on that
work. There is substantial variation in the methods used
for defining and summarizing the measures of texture.
No consistent approach is used to reduce the large num-
ber of predefined features, or machine-identified fea-
tures, to a subset or summary for analysis. Studies also
varied in their design. While most studies used a case—
control design, some of these were nested in prospec-
tive cohorts, and other studies were retrospective cohort
studies. Given this variation, we did not combine data
across studies but note that comparison within studies
shows that texture features are related to breast cancer
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Table 5 Analytical models used for breast cancer risk with breast texture features in addition to mammographic breast density for 5

studies using the contralateral breast (sorted by year)

References Non-mammogram Established confounders Prediction horizon AUC (baseline model) Overall AUC
covariates included (e.g., for density adjusted for (<5 year/5 year/10 year) (with texture
age, parity, etc.) features

added)

Alietal. [26] Age, BMI, density, HRT Age, BMI, HRT use, and NR 0.687 for apparent, 0.634  0.703 for
status, parity, age at first menopausal status for honest apparent,
birth 0.643 for

honest

Wang et al. [45] Adjusted for age, BMI Age, BMI, HRT use, and NR mC=0.57 mC=0.58

menopausal status

Perez-Benito [39] Percent density Age NR 0.560 0.614

Pertuz et al. [52,63] None and with age, per- Age NR Density only =0.609 0.786
cent density

Tan et al. [44] None, with age only,and ~ Age and BMI NR Density=0.52 0.68

with age and BMI

AUC area under the curve, BMI body mass index, HRT hormone replacement therapy, mC matched concordance index, NR not reported

incidence and improved concordance or AUC. Texture
features are important contributors to breast cancer risk
beyond mammographic breast density.

There have been some efforts on validating the tex-
ture features included in the studies in the literature. For
example, the Tabdr classification of parenchymal patterns
has been shown to be highly reproducible [58] and sev-
eral studies used a separate validation cohort. However,
there is a need for more evidence evaluating these fea-
tures, including external validation using different popu-
lation characteristics.

There are several limitations to the studies included
in this review. There was a large amount of variability
in reporting established confounders of density, raising
the issue of study confounding among studies that did
not account for these established risk factors for density
measures. Methods used may be nongeneralizable due to
study specificities such as using different types of mam-
mograms and different racial/ethnic populations. With
short time periods between mammography and diagnosis
of cancer, it is difficult to know whether studies using the
ipsilateral breast are predicting breast cancer or merely
detecting it. Some studies only provided evidence of an
association rather than assessing the prediction perfor-
mance of future risk, limiting their clinical translation.
Large sample sizes are needed to validate associations,
and a few studies had a small number of cases. Variation
in the risk of bias observed in these studies reflects the
variation in methods particularly in consideration of con-
founding. Level of reporting impacted our ability to fully
assess the risk of bias in these studies.

We observed 5 studies using measures of texture that
were measured or defined at the time of cancer diagno-
sis and from the contralateral breast [26, 39, 44, 45, 52].

Density was first evaluated as a risk factor for breast cancer
using the contralateral breast at the time of diagnosis, and
case—control studies have used an approach like this for
decades in cancer epidemiology [59]. However, for assess-
ing risk, examining features in the unaffected breast prior
to diagnosis is a superior approach. Considering this previ-
ous work, we chose to include studies using the contralat-
eral breast, but stratified tables in light of their limitations.
We found that studies using the contralateral breast at the
time of cancer diagnosis tended to report greater increases
in AUC when adding parenchymal texture features.

To more effectively improve risk classification and
prediction, we note the need for a harmonized strategy
for assessing features across studies. The measurement
challenge is a resource providing common mammogram
images to identify the best method to measure mam-
mographic density and predict breast cancer risk [60].
A similar project extends explorations to digital breast
tomosynthesis and breast architecture distortions for use
in screening and prediction model development [61].

In the 2016 review, Gastounioti et al. reviewed features
of automated parenchymal texture analysis in relation
to breast cancer risk [21]. This included details of meth-
ods to classify texture in mammographic images and
its contribution to discrimination in case—control stud-
ies. Based on the review, they concluded that further
research including large prospective studies is needed to
establish the predictive value of parenchymal texture for
ultimate inclusion in breast cancer risk prediction mod-
els. Such prediction models that extend to 5 and 10 years
then require external validation to support clinical risk
management. While we have a stronger base of evidence
with more prospective studies in our review, our overall
conclusions remain the same, though we emphasize the
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need for a coordinated strategy to enable greater compar-
isons and applicability of studies as well as studies using a
longer prediction horizon.

Regarding our methods for this updated systematic
review, we used the QUIPS tool [24] to assess the risk of
bias. There are several limitations to the current review.
The heterogeneity of the data did not allow for a meta-
analysis. Additionally, systematic reviews are always sub-
ject to possible publication bias if all relevant studies have
not been published. We used several strategies to reduce
the risk of this including using a thorough search strategy
designed by a medical librarian with expertise in search-
ing for systematic reviews and searching clinicaltrials.gov
for any ongoing studies.

For clinical use to guide precision prevention, we must
identify both high-risk women for a range of risk reduction
strategies [6] and low-risk women to consider the frequency
of screening [62]. From this systematic literature review, we
identify gaps in evidence to prioritize future studies. They
include: (1) details on the prediction horizon for the risk
of breast cancer; (2) other statistical approaches might also
be used to assess the risk of breast cancer from the time of
image acquisition that includes the texture features to the
diagnosis of breast cancer such as survival analysis.

Conclusion

The addition of parenchymal texture features to risk pre-
diction models generally resulted in improved perfor-
mance beyond mammographic density. Despite current
limitations in the literature, the more widespread use of
digital mammography and availability of digital images
including parenchymal features offer a growing oppor-
tunity to more uniformly assess image texture features.
Incorporating these features into risk prediction models
can improve risk classification and risk prediction, lead-
ing to improved breast cancer risk management such as
tailoring screening interval and prevention strategies to
the level of risk.
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